Bloch-type Ferroelectric Domain Walls in Rhombohedral BaTiO₃

M. Taherinejad,¹ D. Vanderbilt,¹ J. Hlinka,² and V. Stepkovaand²

¹Department of Physics, Rutgers University, Piscataway, NJ 08854, USA. ²Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance, 18221 Praha, Czech Republic.

Ferroelectric domain walls (FDWs) are usually considered to be of Ising type, in which \mathbf{P}_{\parallel} , the projection of the polarization vector onto the plane of the domain wall, simply reverses itself by passing through zero along a high-symmetry path as one scans through the domain wall. Ising FDWs tend to be favored because ferroelectrics are generally strongly electrostrictive, so that a rotation of \mathbf{P}_{\parallel} away from this high-symmetry path would entail a significant elastic energy cost. However, there have been some theoretical predictions of the presence of Bloch and even Néel components in some FDWs [1, 2]. Most recently, it has been predicted, in the framework of a phenomenological Ginzburg-Landau-Devonshire (GLD) model, that the 180° FDWs in rhombohedral BaTiO₃ are of Bloch type [3].

In the low-temperature rhombohedral phase of BaTiO₃, the possible mechanically compatible and electrically neutral FDWs are of three types: R71°, R109°, and R180°, where the angle denotes the rotation relating \mathbf{P}_1 and \mathbf{P}_2 (the polarizations on either side of the wall). The plane of the domain wall can be either { $\bar{2}11$ } or { $1\bar{1}0$ } for the 180° FDW, and is normal to $\mathbf{P}_1 + \mathbf{P}_2$ for the other two FDWs. We have investigated the R71°, R109°, and R180°{ $1\bar{1}0$ } FDWs in BaTiO₃ using first-principles calculations within the local-density approximation (LDA).

Our calculations confirm the Bloch nature of the R180°{ $1\overline{10}$ } wall, which can be thought of as a combination of Ising R71° and R109° FDWs. Comparison of the first-principles results and the GLD model [3] suggests that a 40% reduction in the gradient term in the GLD model is needed to bring agreement with the first-principles results. The R71° FDW is found to be of Ising type; this is consistent with expectations since the Bloch component for this wall points towards the center of a cube face, which is not one of the preferred directions in the rhombohedral phase. For the R109° FDW, on the other hand, the Bloch component of **P** does point toward a rhombohedral polarization direction, making the Bloch configuration competitive with the Ising one in this case. In fact, the Bloch R109° FDW can be considered as a combination of two Ising R71° walls, and the energy difference between this and the Ising R109° FDW is only a few meV.

- [1] B. Meyer and D. Vanderbilt, Phys. Rev. B 53, R5969 (1996).
- [2] D. Lee *et al.*, Phys. Rev. B **80**, 060102 (2009).
- [3] P. Marton, I. Rychetsky, and J. Hlinka, Phys. Rev. B 81, 144125 (2010).