Accurate Computational Studies of Carbon Doped Two-Dimensional Boron-Nitride

H. Park,1 A. Wadehra,1 J. Wilkins,1 and A. C. Neto2

1Department of Physics, The Ohio State University, Columbus, OH 43210, USA.
2Graphene Research Centre, National University of Singapore, Singapore, and Boston University, Boston, MA, USA.

The great success of graphene has vastly extended the range of possible applications of an atomic-layer two-dimensional (2D) crystals with a plethora of new materials. One of these materials is the 2D hexagonal structure of boron nitride (h-BN). h-BN has a wide band gap and a lattice constant similar to that of graphene. We show that even small quantities of C atoms can offer new functionalities and transform h-BN to be an amazing playground for 2D physics. Large-scale accurate density-functional-theory calculations with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional study the electronic and the magnetic properties of h-BN with substitutionally embedded carbon atoms. Results of local magnetic moments induced by substitution and their interactions will be presented for low C concentrations. We will also show the electronic structures of quantum dots made of carbon nano-domains for applications in optics and opto-electronics.

This work was supported by DOE-BES-DMS (DEFG02-99ER45795). We used computational resources of the NERSC, supported by the U.S. DOE (DE-AC02-05CH11231), and the OSC. AHCN acknowledges DOE grant DE-FG02-08ER46512, ONR grant MURI N00014-09-1-1063, and the NRF-CRP award “Novel 2D materials with tailored properties: beyond graphene” (R-144-000-295-281).

Contact: hkpark@mps.ohio-state.edu