Effects of Disordered Substitutions and Vacancies in Fe Based Superconductors from First Principles

T. Berlijn, L. Wang, Y. Wang, C.-H. Lin, W. Garber, P. J. Hirschfeld, and W. Ku

1 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
2 Department of Physics, University of Florida, Gainesville, FL 32611, USA.
3 Physics Department, State University of New York, Stony Brook, NY 11790, USA.

Using a recently developed Wannier function based first principles method [1], we compute the configuration-averaged spectral function $\langle A(k, \omega) \rangle$ of Fe based superconductors containing disordered substitutions and vacancies. In the transition metal doped Ba(Fe$_{1-x}$M$_x$)$_2$As$_2$ with M=Co/Zn we find in addition to an increased chemical potential a loss of coherent carrier spectral weight [2]. For the case of isovalent substitutions we find the Fermi surface to be protected against the influence of disorder, surprisingly even in Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$. For the case of disordered Fe and K vacancies in K$_{0.8}$Fe$_{1.6}$Se$_2$ we find a Fermi surface consisting of large/small electron pockets in the zone corners/center [3], in good agreement with ARPES measurements.

Work supported by DOE DE-AC02-98CH10886 and DOE CMCSN.

Contact: tberlijn@gmail.com