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  Problem
  In nanoelectronic applications, efficient time-
dependent simulations have become increasingly 
important for characterizing the electron dynamics 
under time dependent external perturbations such as 
electromagnetic fields, pulsed lasers, and particle 
scattering. 
  Reliable modeling approaches in time domain, 
however, are often limited in term of trade-off 
between robustness and performances, and a direct 
numerical treatment is difficult.

  Contributions
  In this work, we aim to go beyond these limitations 
by introducing high performance numerical schemes 
to compute the solution of the time-ordered evolution 
operator. The numerical treatment of these evolution 
operators often gives rise to the matrix exponential, 
commonly treated using approximations such as split-
operator techniques. In contrast, the efficiency of the 
time-domain propagation techniques described here, 
is enhanced by reliance on the capabilities of the 
FEAST [1] algorithm for solving the eigenvalue 
problem. FEAST has the ability to re-use the basis of 
a precomputed subspace as suitable initial guess for 
solving the series of eigenvalue problems, which 
makes convergence fast. 
  In addition, in order to reduce even further the 
number of large-scale eigenvalue problem, two 
highly optimized propagation schemes (Gauss and 
BTPS) [2] have been proposed and implemented.

  RT-TDDFT Theory
  For a system which is composed of  N electrons, 
the electron dynamics can be described by a set of 
one body equations,  each one is of the form:

 Under Adiabatic Local density approximation 
(ALDA), the exchange correlation term is local in 
both space and time. Using a single electron picture, 
and in the time dependent density functional theory 
(TDDFT) framework, the solutions of the self-
consistent stationary Kohn-Sham Schrodinger type 
equation are taken as initial wave functions.
  After we obtain self-consistent ground states, N 
ground state Kohn-Sham orbitals will be propagated 
over time. Here we perform all electron calculation 
and update potential (solving Poisson equation) in 
each time step.
  The solution of Equation can be written as:

often, small time step is chosen so H can be viewed 
as constant in that time interval.
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  Spectral Propagation Schemes
  By using FEAST, the eigenvalue problem is 
reformulated into solving a set of well-defined 
independent linear systems along a complex energy 
contour. The Hamiltonian at each time step can be 
directly decomposed as:  D = PTHP

     The direct propagation for small time step reads:

  

   Two numerical errors are respectively involved in our 
spectral propagation schemes: 1. integration error from 
the numerical quadrature. 2. an error on the anti-
commutation resulting from the decomposition of the 
exponential.
  From our simulation, integration error is more 
important to keep the evolution accurate. There is a 
mathematical proof which can be found in [3].

 (t) = T
(
Y

i


Pi exp

✓
�i

~ �tDi

◆
PT

i S

�)
 0

  Spectral schemes vs C-N
  Crank-Nicolson (C-N) is the propagation scheme 
used by mainstream of the community. However,  
C-N requires propagation time step to be extremely 
small in order to get accurate and stable result 
(typically 2 attosecond).
   The  figure below is the comparison of dipole 
moment for carbon monoxide (CO) obtained using 
both our spectral propagation scheme and C-N. The 
result shows spectral scheme is stable for large time 
step (30 as), while C-N fails quickly when we 
increase the time step.

  Spectral propagation scheme can provide larger 
time steps, and more importantly all the linear 
system within FEAST can be solved in parallel (C-
N is sequential). The efficiency and robustness of 
our spectral propagation scheme makes simulation 
of large system feasible.

  Electron THz response in CNT
  We perform 3D simulations of an isolated CNT 
which is sandwiched between two electrodes producing 
a AC voltage at THz frequency. In this calculation,  an 
empirical pseudopotential is used, a very short pulse 
(time domain) is injected into the CNT. We calculate 
the current density in the middle of the tube, then 
Fourier transform the current density in order to get the 
responses of the CNT.

  

   The corresponding phase velocity of the resonance 
frequency is: v=1.14*10^8 cm/s. We can see that the 
phase velocity is constant, showing that the high-
frequency electron response is dominated by single-
particle excitations rather than collective plasmon.
  Our simulations show that we have obtained a phase 
velocity which is consistent with the Fermi velocity 8* 
10^7 cm/s which was also measured in a recent 
experiment.

  Molecule Optical response
  Our model consider all-electron calculation, real-
mesh techniques (3D cubic finite-element method), 
and real time propagation of the Kohn-Sham 
equations. In order to get optical responses for 
molecules, we apply a weak delta kick (impulsive 
potential) or step function potential to the system, 
let it evolve over time, then Fourier transform the 
dipole moment to get the optical oscillator strength.
  For H2, we apply both potentials, and reach the 
same optical response.  Our result of the first excited 
energy is 11eV while the experiment results is 11.19 
eV. For CO the first excited energy reads 8.5 eV, 
which experiment shows 8.47 eV.
  Because we have all electron calculation and direct 
spectral decomposition. Our results shows very 
good agreement with the experiments. And in order 
to go to larger molecules and CNTs, we are actively 
working on parallelism of our schemes.
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Approximation to 
evolution operator 

Gauss quadrature 
Integration error 

Anti-commutation error 
P is small 

Polynomial expansion 
Splitting techniques, etc. 

Conventional Scheme  Spectral Propagation Scheme  

Rectangular rule 

Approximation to 
exponential of  
Hamiltonians 
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Direct spectral decomposition 
using FEAST 
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Carbon Nanotubes 

•  (5,5) metallic SWCNT quantum dot with various lengths 

•  EM radiation at THz frequencies, pulse and sinusoidal function 

•  Solving the time dependent Schrodinger equation in time 
domain using full time dependent potential, and obtaining 
frequency responses 

CNT 
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