# **Enhanced Many-Electron Effects in Gated Bilayer** Graphene

Yufeng Liang and Li Yang Department of Physics, Washington University in St. Louis, MO, 63130





- underestimates band gap and no electronhole(*e*-*h*) pair picture

# I. Many-Body Perturbation Theory

#### $\square$ GW-APPROXIMATION (GWA) [2]:

• Approximate self energy as the product of dressed Green's function (G) and screened Coulomb interaction (W) to calculate the Quasiparticle (QP) energies • W: 1 / (dielectric function  $\epsilon$ ) × bare Coulomb interaction v • Take into account electron-electron screening effects

#### **DETHE-SALPETER EQUATION (BSE) [3]**:

• The *e*-*h* correlation is described by the BSE

$$(E_c - E_v)A_{vck}^s + \sum_{v'c'} K_{vck,v'c'k}^{AA} (\Omega_S)A_{v'c'k}^s = \Omega_S A_{vck}^S$$

- The interaction kernel K depicts screened e-h Coulomb interaction. Ec and Ev are the previously computed QP energies.
- Give reliable *e*-*h* excited states that are related to the optical response of the material.

### **II. Modeling the Dielectric Function**

□ Many-electrons effects are crucial to decide the electronic structure and optical excitations of the gated bilayer graphene (GBLG). • Enhanced e-e interactions dramatically enlarge band gap: QP band gap by GWA > 150% of LDA band gap • Optical gap is in excellent agreement with experiments.

# **IV. Excitonic Effects and Optical Absorption**



(a) Single-particle transition matrix element (b) (c) Exciton wavefunction for exciton D and A in reciprocal space





![](_page_0_Figure_24.jpeg)

- □ The infrared optical absorption spectra are dictated by a bright bound excitonic state A (2-fold degeneracy)
- $\square$  An unusual low-energy dark excitonic state D with *e* and *h* completely condensed into separate layers.

# **References and Acknowledgement**

We acknowledge the computational resource from Lonestar of Teragrid at the Texas Advanced Computing Center and the National Energy Research Scientific Computing Center (NERSC) funded by the U.S. Department of Energy. [1] Yuanbo Zhang et al, Nature 459, 820-823 (2009) [2] Mark S. Hybertsen and Steven G. Louie, PRB 34, 5390 (1986)

![](_page_0_Picture_29.jpeg)