

- \Rightarrow promising for large systems
- \Rightarrow flexible choice of basis

$$e^{-\tau \hat{H}} e^{-\tau \hat{H}} \cdots e^{-\tau \hat{H}} |\Psi_{\rm T}\rangle \rightarrow |\Phi_0\rangle$$

$$e^{-\tau \hat{H}} = \int d\boldsymbol{\sigma} P(\boldsymbol{\sigma}) e^{-\tau \hat{h}(\boldsymbol{\sigma})}$$

- formidable

Efficient, pseudopotential-free auxiliary-field quantum Monte Carlo calculations in solids

Wirawan Purwanto, Shiwei Zhang, and Henry Krakauer Department of Physics, College of William and Mary, Williamsburg, Virginia, USA

MnO low-high-spin energy gap

"NM"–FM gap: $\Delta E \equiv E_{S=1/2} - E_{S=5/2}$

- MnO primitive unit cell, a = 8.4 Å

- Plane-wave or truncated KS basis
- KS band energy cutoff $\sim \epsilon_{3p} + 4.7$ Ha
- *L* point only

Basis convergence check

Results:

MnO NM–AFM energy gap

- QMC cost is *identical* in both cases.

Summary & Outlook

Frozen core AFQMC succesfully implemented in solid systems with basis downfolding:

- Calculation cost is significantly reduced • FC avoids issues with pseudopotentials

Further development:

- implemented)

• Norm-conserving, single-projector PPs generated with OPIUM • He-core PP \rightarrow approximating AE calculation

Comparing DFT (all-electron and PPs) and AFQMC

			ΔE (eV)	
Mn PP	Basis	Nbasis	DFT (GGA)	AFQMC
Ne-core	PW 50 Ha	2488	1.51	2.28(4)
	KS	53		2.32(4)
He-core	PW 800 Ha	160046	1.14	
	KS	59		1.76(3)
He-core + FC	KS	55		1.77(2)
AE	LAPW		1.13	
AE	PAW*		1.11	
PAW: * Ne core frozen at atomic level				

• Gap is converged at ~ 50 KS basis functions (1/40 of the original PW basis) • He-core PP (with/without FC): excellent approximation to AE • Ne-core PP: $> 0.5 \text{ eV error} \rightarrow \text{issues with single-projector PP}$

Gap between NM and AFM II phases: $\Delta E \equiv E_{NM} - E_{AFM}$ • MnO rhombohedral 4-atom unit cell, *L* point only • Comparing: Ne-core PP to He-core PP + FC

• Basis downfolding/frozen core at arbitrary Bloch vector **k** (already

• What is the most appropriate downfolded basis representation for solids?

