Self-diffusion of small Ag, Cu and Ni islands on fcc(111) surfaces: an application of SLKMC-II Syed Islamuddin Shah, Giridhar Nandipati, Abdelkader Kara, Talat S. Rahman University Of Central Florida

Introduction

We report the development of a pattern-recognition scheme that takes into account both fcc and hcp adsorption sites in performing self-learning kinetic Monte Carlo (SLKMC-II) simulations on the fcc(111) surface. In this scheme, the local environment of each under-coordinated atom is uniquely identified by grouping the fcc and hcp sites and the top-layer substrate atoms around it into hexagonal rings. As simulation progresses, all possible processes - including shearing, reptation and concerted gliding, which may involve fcc-fcc, hcp-hcp and/or fcc-hcp moves are automatically found, and their energetics calculated on the fly. We present results of application of this new pattern-recognition scheme to the self-diffusion of M9/M(111), where M = Cu, Ag or Ni.

Self Learning KMC^a

Pattern Recognition

Key processes and their barriers

Size dependence of effective energy barriers

• Used to collect information about local environment of cluster atoms

• Unique Binary number generated based on the local neighborhood: a base ten number is associated with each shell as shown below.

• Only 2 of the considered shells are shown in figure

• Each event

- is identified based on local environment.
- involves a central atom and other atoms in the cluster
- involves a central atom moving to neighboring

vacancy

• is accompanied by the motion of any other atom or atoms in its surrounding shells

Barriers moves

0.058 1 1 2

0.058 1 1 6

#atoms

Processes	Ag	Ni
Concerted	.420	.530

Sizo	E _{eff} (eV)			
Size	Ag	Ni	Cu	
1	0.059	0.058	0.027	
2	0.096	0.136	0.086	
3	0.179	0.196	0.118	
4	0.202	0.217	0.134	
5	0.287	0.353	0.163	
6	0.298	0.401	0.227	
7	0.410	0.477	0.314	
8	0.413	0.482	0.324	
9	0.425	0.533	0.369	
10	0.501	0.590	0.457	

	E _{eff} (eV)		
Size	SLKMC-II	SLKMC	
1	0.027	0.026	
2	0.086	0.091	
3	0.118	0.141	
4	0.134	0.211	
5	0.163	0.234	
6	0.227	0.300	
7	0.314	0.362	
8	0.324	0.430	
9	0.369	0.444	
10	0.457	0.580	

X			11-10	(a)	12 -(1	1)-10
Ring #	# Binary #	Decimal #		Ring numbers 42 273 83220	processes	Barriers 0.058 1
1	010101	42				0.058 1 0.058 1
2	000100010001	273				1
3	0010100010100010100	83220		(b)		#ato

A(B)2->C1	.300(.350)	.400(.538)
A(B)2->A(B)2	.260(.330)	.320(.440)
C1->A(B)2	.070(.130)	.040(.180)
KA(B)3->C1	.462(.550)	.730
A(B)2->K3	.250(.330)	.280(.318)
KA(B)3->A(B)2	(.540)	
KA(B)4->C1	(.747)	

Activation Barriers

- EAM ^b potential to calculate activation energy barriers. • Drag Method – central atom is moved in steps towards aimed final position.
- Coordinate of central atom along direction of motion fixed
- all other degrees of freedom of central atom are relaxed
- all degrees of freedom of all the other atoms are relaxed • Novel single atom as well as multi-atom processes are revealed.

Symmetry Operations

- Rotation 120⁰ and 240⁰ clock wise
- Mirror Reflection
- Mirror Reflection and Rotation 120⁰

Center of Mass Trajectories and MSD

Conclusions

• <u>New pattern recognition</u> scheme includes both <u>fcc and hcp</u> sites on the fcc (111) surface.

• Different types of processes including concerted motion from fcc-to-hcp (hcp-to-fcc) were found using the Drag Method.

• Effective energy barrier increases with cluster size, for small clusters, as 0.049, 0.060 & 0.045 eV/atom for Ag, Ni and Cu respectively.

• Diffusion coefficient decreases with island size and increases with temperature for small islands.

• Comparison of the results for small Cu islands with those obtained from simulations (SLKMC I) without hcp sites in the pattern recognition scheme show trends that can be explained.

Acknowledgements:

Supported partially by NSF under grant NSF-ITR 0840389 and DOE under grant DE-FG02-07ER46354

• Mirror Reflection and Rotation 240⁰

Mean square displacements and center of mass trajectories for Cu(a & b), Ag(c & d), Ni(e & f) @ 500K

