Surface Studies with Combined Free Energy Functionals of Electronic and Liquid Densities

Kendra Letchworth-Weaver, Ravishankar Sundaraman, Tomás A. Arias
Department of Physics, Cornell University, Ithaca, NY 14853

Free Energy Functionals for Solvated Surfaces

Solvated Surfaces: Potential Applications
- Catalysis
- Surface Stability

Which Solvation Theory is Appropriate?

![Diagram showing various solvation theories and their applications]

Joint Density-Functional Theory (JDFT)
Rigorous description of electronic systems in complex environments
- Solvent Electron Density:
 - Solvent atom densities
 - Electronic density fluctuations

Liquid Functional

![Diagram showing liquid functional representation]

Density-Only DFT: Thomas-Fermi-LDA approximation

Coupling Functional

![Diagram showing coupling functional representation]

Double Layer and Adsorption Capacitance

Metal Surfaces in Aqueous Electrolyte

Gouy-Chapman-Stern Model
- Structure of the double layer in terms of spacing and orientation
- Saturation of the dielectric in strong fields
- Differences in ionic and electronic states
- Ion-ion correlation

Voltage-Dependent Structure

Potential of Zero Charge (PZC) from vacuum to solvated surface

Double Layer and Adsorption Capacitance

Rutile TiO₂ (001) in Water

![Diagram showing Rutile TiO₂ (001) in Water]

This material is based on work supported by the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Award Number DE-SC0001086.

Kendra Letchworth-Weaver is additionally supported by a National Science Foundation Graduate Research Fellowship.