Real-space All-electron Band Structure Calculations
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An all-electron numerical framework for band structure calculations
is presented. A 3D finite element mesh is used to discretized the

DFT/Kohn-Sham problem in real space using full ionic local poten-

tial. The mathematical model allows flexibility for addressing vari- ;
ous combinations of Bloch and Dirichlet boundary conditions for low- IT) --+11311 22 £ 3. : :: B -
dimensional nanostructures, and the resulting large-scale eigenvalue hd

problems are solved using the FEAST solver [1]. The complexity of
numerical framework scales linearly with the number of atoms, and it

is flexible to address arbitrary impurities, defects and roughness.
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Band structure of Valence (left) and core (right) states of PPP molecule.
Results are in strong agreement with [5].

Band structure calculations are performed on a finite element mesh with
DFT utilizing the full ionic all-electron potential and Bloch periodic

boundary conditions. puessos s s .
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The Hartree potential is calculated from the Poisson equation with both E :;EH:::L e
periodic and Dirichlet boundary conditions and is solved using the Con- Atormic Mesh Interstitial Mesh poesasag g3t " TR Eoee. epgueners

jugate Gradient method with an incomplete Cholesky preconditioner.
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The local density approximations with Perdew-Zunger correction is used "tee., Siees
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for exchange and correlation terms. The resulting eigenvalue problem is AR sEeazllt
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solved using FEAST|1]. Self consistency is achieved using Pulay mixing. prssesssssas e tt? bvessssossnssnnsss®®™
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The band structure of the semiconducting 4-AGNR (left) and metallic
5-AGNR (right).

The FEAST eigenvalue algorithm (2] offers many important and unique
capabilities for achieving accuracy, robustness, high-performance and
scalability on parallel computing architectures. At first, the algorithm
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