Motivation

- CaMnO₂ has attracted attention due to its multiferroicity, thermoelectric efficiency, colossal magnetoresistance, and catalytic properties.
- Recently, an experimental study reported that CaMnO₂ acts as an efficient catalyst for water oxidation, but very little is known about the mechanism.
- CaMnO₂ surface plays a significant role in the development and understanding of CaMnO₂ as a potential catalyst.
- Neither experimental nor theoretical studies have investigated the structural composition and reconstructions of CaMnO₂ surfaces under different environmental conditions.

Computational Methods

- Density Functional Theory (DFT) calculations were performed within GGA using the Perdew-Burke-Ernzerhof functional for solids (PBEsol).
- Spin-polarized electronic densities are used, treating the magnetic moments collinearly.
- Norm-conserving, optimized, ultrasoft pseudopotentials for all atoms.
- The Brillouin zone was sampled using 4x4x4 Monkhorst-Pack k-point mesh for surface structures.
- Density functional perturbation theory (DFPT) was used to calculate phonon frequencies at the Γ point for all secondary phases.

CaMnO₂ (001) Surface Structures

- The structures computed are constructed with (2x2x1) surface symmetry and symmetrical slabs.
- The surface terminations are designed by varying the stoichiometry of Ca, Mn and O including additional CaOₓ and MnO<y layers.
- Each surface termination is identified based on its termination (either CaO or MnO₃) and whether it contains vacancies (\(v\)) or adatoms (\(a\)).

Thermodynamic Stability

The surface free energy, \(\Delta F\), of an individual surface slab, \(i\), is defined as the excess amount of free energy needed to create the surface from its bulk form:

\[
\Delta F_i = \frac{1}{2} \sum_{\text{vib.}} \mu_i + \left(\frac{1}{2} \sum_{\text{vib.}} \mu_i + \sum_{\text{vib.}} \mu_i \right) \Delta E_{\text{vib.}}
\]

The following term accounts for the off-stoichiometric atoms of component \(x\) with respect to \(i\) in the slab:

\[
\Gamma_{\text{vib.}} = \frac{1}{2} \left(N_x - N_{x_{\text{vib.}}} \right) \sigma_{\text{vib.}}
\]

Then, Eq. (1) and (2) are merged to rearrange the definition of the Gibbs surface free energy,

\[
\Delta F_i = \frac{1}{2} \sum_{\text{vib.}} \mu_i + \left(\frac{1}{2} \sum_{\text{vib.}} \mu_i + \sum_{\text{vib.}} \mu_i \right) \sigma_{\text{vib.}} \]

In addition, the bulk stability region is defined by a set of boundary conditions that determine the stability range of the chemical potential with the following conditions:

- The Ca and Mn metals are not allowed to lose the bulk and form precipitates.
- The bulk is stable when the metal oxides do not precipitate.
- This criteria accounts for the possible precipitation and arrangement of complex sub-phases from the bulk.

Surface Phase Diagram

| Surface Phase Diagram of CaMnO₃ (001) Surface | Thermodynamic Stability of the CaMnO₃ (001) Surface | Temperature Dependence |

Conclusions

- A series of CaO and MnO₃ terminated surfaces with different combinations of its components’ vacancies, all atoms and additional layers are reported using all site thermodynamics to theoretically predict the surface phase diagram of CaMnO₃ (001).
- The stability region defined by a criteria of boundary conditions is distinctly dominated by CaMnO₃, CaMnO₂, and CaO.
- The stability region shifts as temperature increases leading to the presence of MnO₃-based surfaces.
- The Surface phase diagram, specifically the MnO₃-terminated surfaces, is sensitive to magnetic ordering.
- This work is funded by the DOE.

Acknowledgement

This work is funded by the DOE.