Spin-orbit coupling within Dynamical Mean-Field Theory: Coulomb correlations in 5d and 4d transition metal oxides

C. Martins ^{1,2,*}, M. Aichhorn ³, S. Biermann ^{1,2}

¹Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France ² Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan ³ Institute of Theoretical and Computational Physics, TU Graz, Petergasse 16, Graz, Austria * New address : CEA, DAM, DIF, F-91297, Arpajon, France

Phys. Rev. Lett. 107, 266404 (2011)

energie atomique • energies alternatives

Abstract

The concept of spin-orbit coupling has been known for more than half a century, and its importance in magnetic materials has been recognized early on. Still, the interplay of spin-orbit interactions with electronic Coulomb interactions in paramagnetic materials remains a largely unexplored field.

We discuss here the notions of spin-orbital polarization and ordering, and address their consequences in transition metal oxides. By extending the combined density functional theory (DFT) and dynamical mean-filed theory (DMFT) scheme as implemented in [1] to the case where spin-orbit interactions are important, we investigate the electronic excitations of the paramagnetic phases of Strontium Iridate (Sr_2IrO_4) and Strontium Rhodate (Sr_2RhO_4).

Sr_2IrO_4 is a Mott insulator with one hole in the $j_{eff}=1/2$ spin-orbital. The size of the gap is ~ 0.25 eV.

There is neither a magnetic order, nor an orbital order but a "spin-orbital order".

Sr₂IrO₄ is a " j_{eff}=1/2 Mott insulator ".

The suppression of spin-orbital fluctuations is a consequence of the combined effect of SOC and the structural distortions.

-0,4 -0,2 0 -		-0,2 0 0,2
Energy (eV)	Energy (eV)	Energy (eV)
(a) – j _{eff} =3/2 m _j =1/2	(b) – j _{eff} =3/2 m _j =3/2	(c) – j _{eff} =1/2

Fermi vector k _F	From ARPES data [4]	LDA+SO+DMFT
α pocket	0.17 Å⁻¹	0.18-19 Å⁻¹
β pocket (β_M and β_X)	0.66 Å⁻¹	0.65-0.69 Å⁻¹

Sr₂RhO₄ is a partially spin-orbital polarized correlated metal. Our LDA+SO+DMFT calculations are in excellent agreement with ARPES spectra obtained at 10 K [4].

Conclusion

We have performed complete *ab initio* calculations for Sr_2IrO_4 and Sr_2RhO_4 . **

 Sr_2IrO_4 is a $j_{eff} = 1/2$ Mott insulator (U = 2.2 eV, J = 0.3 eV) and Sr_2RhO_4 is a partially spin-orbital polarized metal (U = 1.6 eV, J = 0.3 eV).

We have emphasized the interplay of the spin-orbit coupling with electronic Coulomb interactions in 4d and 5d transition metal oxides. $\mathbf{\mathbf{\hat{v}}}$

We have performed LDA+SO+DMFT calculations. *

Application to doped Sr_2IrO_4 or Ba_2IrO_4 (search for supraconductivity) and, more generally, to other 5d transition metal oxides or compounds.

[1] – Aichhorn et al, Phys Rev B 80, 085101 (2009) [2] – Klein & Terasaki, J. Phys.: Cond. Mat.20 (2008) [3] – Kim et al, Phys Rev Lett 101, 076402 (2009) [4] – Baumberger et al, Phys Rev Lett 96, 246402 (2006)

[5] – Moon et al, Phys. Rev. B 80, 195110 (2009)

[6] – Moon et al, Phys. Rev. B 74, 113104 (2006) [7] – Kim et al, Science 323, 1329 (2009)

- [8] Jin et al, Phys. Rev. B 80, 075112 (2009)
- [9] Haverkort et al, Phys. Rev. Lett. 101, 026406 (2008)

[10] – Liu et al, Phys. Rev. Lett. 101, 026408 (2008) [11] – Blaha et al, « Wien2k, An Augmented Plane Wave+ Local [13] – Vaugier et al, to be published. **Orbitals Program for Calculating Crystal Properties** » (Karlheinz Schwarz, Tech. Univ. Wien, Austria, 2001)

- [12] Aryasetiawan et al, Phys Rev B 70, 195104 (2004)
- [14] Kotliar & Vollhardt, Physics Today 57, 53 (2004) [15] – Werner et al, Phys. Rev. Lett. 97, 076405 (2006)