

PROBLEM

SOLVING THE KOHN-SHAM EQUATIONS

$$H[n]x_i = \lambda_i S x_i , \qquad n = \sum_i |x_i|^2$$

Where H[n] is the typical Kohn-Sham Hamiltonian with (for our work here) spinless LDA approximation, x_i , λ_i are eigenvector/eigenvalue pairs, n is the electron density, and S is the mass matrix resulting from a finite elements discretization.

TRADITIONAL SCF

The Kohn-Sham equations are traditionally solved using self-consistent field methods that follow the general procedure:

- 1. Find good initial guess n_1 (e.g. with Thomas-Fermi model)
- 2. Get $n' = f(n_i)$, where $f(n_i)$ is the procedure consisting of:
 - (a) Forming the Kohn-Sham hamiltonian $H[n_i]$ by solving poisson's equation, calculating the exchange-correlation operator, etc.
 - (b) Solving the eigenvalue problem $H[n_i]x_i = \lambda_i S x_i$
 - (c) Calculating the new density from the occupied states x_i
- 3. Form n_{i+1} from some function of n' and n_i . If $||n_{i+1} - f(n_{i+1})|| < \epsilon$ then stop; otherwise GOTO step 2.

SIMPLE MIXING:

 $n_{i+1} = \alpha n_i + (1 - \alpha)n', \qquad 0 \le \alpha \le 1$

The value of α is determined heuristically. Typical $\alpha = 0.1$. Convergence is usually very slow.

DIIS:

A list of m densities is first produced using some other procedure (e.g. simple mixing), and then subsequent n_{i+1} are given by[2]:

$$n_{i+1} = \sum_{j=1}^{m} c_j n_{i-j} + c_j r_{i-j} , \quad r_i = n_i - f(n_i)$$

where c_j are the coefficients that minimize $\|\sum c_j r_j\|$ such that $\sum c_j = 1$. Convergence is known to be super linear.

A NONLINEAR EIGENSOLVER-BASED ALTERNATIVE TO TRADITIONAL SCF METHODS

BRENDAN GAVIN AND ERIC POLIZZI UNIVERSITY OF MASSACHUSETTS, AMHERST bgavin@ecs.umass.edu, epolizzi@ecs.umass.edu

NONLINEAR EIGENSOLVER

Our method is based on the FEAST algorithm[1], a method for solving linear eigenvalue problems. The nonlinear Kohn-Sham equations are solved in an approximate subspace Q, which is updated at each iteration:

- 1. Get initial guess for X, the matrix whose columns are the eigenvectors of interest x_i , and n, either or both of which can be completely random
- 2. Get density matrix ρ via numerical complex contour integration:

$$\rho = \oint_C (zS - H[n])^{-1} dz, \quad z \in \mathbb{C}$$

where C is a contour around the part of the real axis where the eigenvalues of the occupied states are expected to be found.

- 3. Form the subspace $Q = \rho SX$
- 4. Solve the projected, reduced nonlinear eigenvector problem

$$Q^T H[n] Q x_q = \lambda_q Q^T S Q x_q$$

by iterating over the density n. This procecure is computationally inexpensive compared to performing the full SCF iteration.

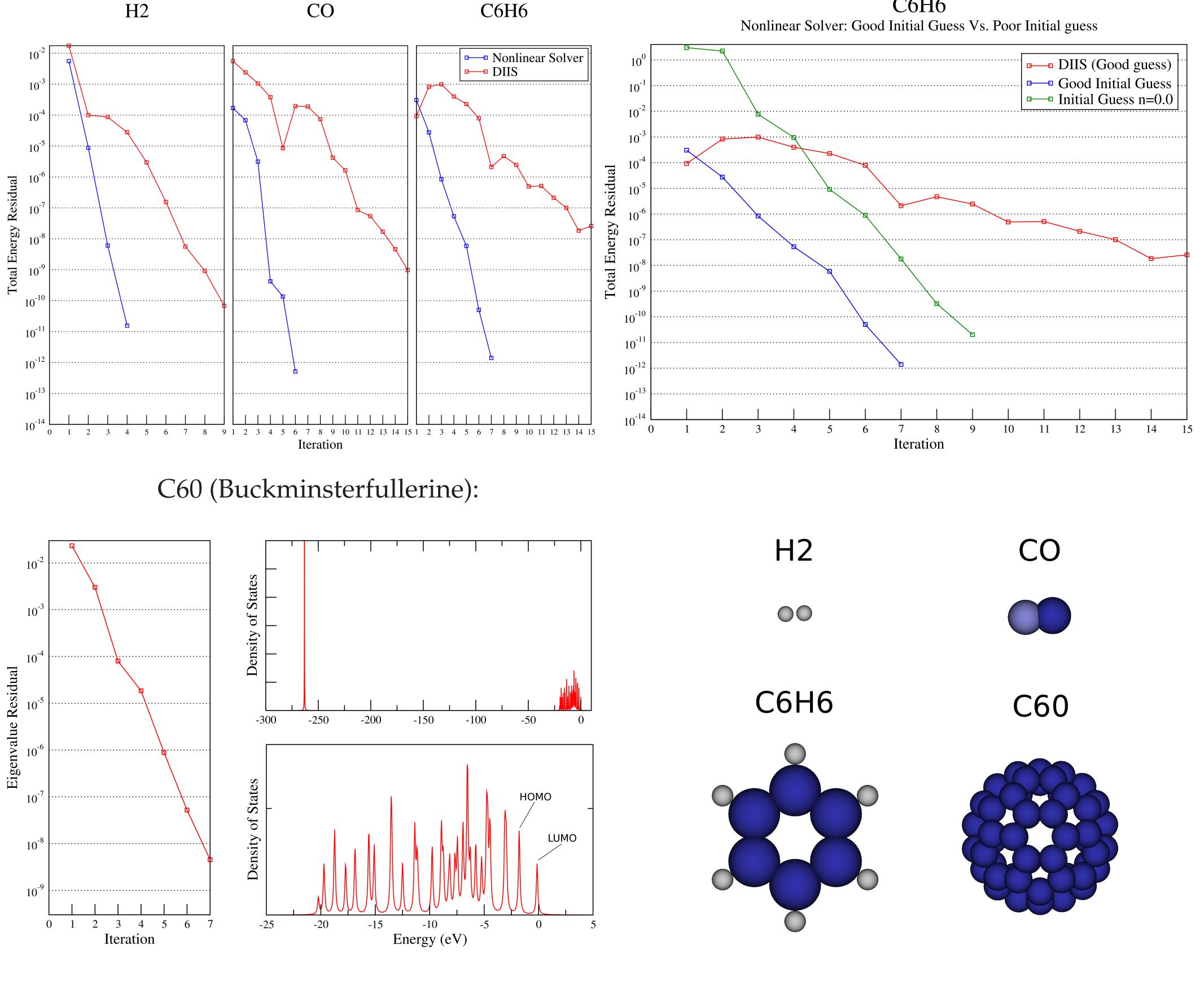
5. Calculate $x_i = Qx_q$, $\lambda_i = \lambda_q$, and the new density. If $\sum \lambda_i$ has converged, exit. Otherwise, GOTO step 2.

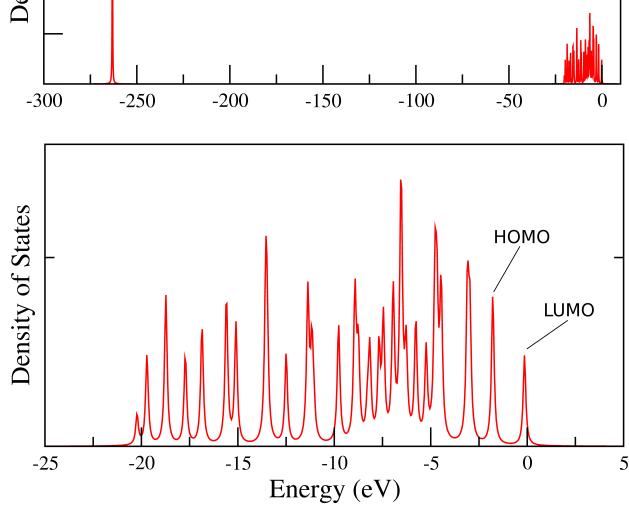
ADVANTAGES

- Computational efficiency: The primary computational costs of our method are mat-vec multiplication and boundary condition assignment in solving Poisson's equation, both of which can easily be parallelized.
- No Initial Guess: Our method converges on the correct result for arbitrary initial guess of density and subspace
- High Convergence rate: Our method converges significantly faster than DIIS, and the convergence rate remains high regardless of system size.

RESULTS

The following is the result of testing done with LDA all-electron DFT using a third order finite elements discretization. The total energy residual, the relative difference between the calculated total energy at subsequent iterations, is used as the means of gauging convergence. C6H6





FUTURE WORK

- Parallelize the solution of the subspace problem $Q^T H[n]Qx_q = \lambda_q Q^T S Q x_q$. This will become the primary bottleneck for much larger systems.
- Update the FEAST package to provide a black-box interface for the algorithm described above. FEAST 2.0 currently provides black-box fuctionality for steps 2 and 3 described in "Nonlinear Eigensolver.

http://www.ecs.umass.edu/~polizzi/feast/

REFERENCES

[1] E. Polizzi, "Density-matrix-based algorithm for solving eigenvalue problems," Phys. Rev. B., vol 79 115112, Mar. 2009.

[2] T. Rohwedder, R. Schneider, "An analysis for the DIIS acceleration method used in quantum chemistry calculations," J. Math Chem., Volume 49, Issue 9, pp 1889-1914, Oct2011.