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PROBLEM

SOLVING THE KOHN-SHAM EQUATIONS

=
(

Where H[n] is the typical Kohn-Sham Hamiltonian
with (for our work here) spinless LDA approxima-
tion, z;, A\; are eigenvector/eigenvalue pairs, n is
the electron density, and S is the mass matrix re-
sulting from a finite elements discretization.

TRADITIONAL SCEF

The Kohn-Sham equations are traditionally solved
using self-consistent field methods that follow the
general procedure:

1. Find good initial guess n; (e.g. with Thomas-
Fermi model)

2. Getn' = f(n;), where f(n;) is the procedure
consisting of:

(a) Forming the Kohn-Sham hamiltonian
H[n;] by solving poisson’s equation, cal-
culating the exchange-correlation opera-
tor, etc.

(b) Solving the

(c) Calculating the new density from the oc-
cupied states z;

eigenvalue problem

3. Form n;, from some function of n’ and n;. If
|nir1 — f(ni41)|| < e then stop; otherwise
GOTO step 2.

SIMPLE MIXING:

nit1 =an; + (1 —a)n', 0<a<l

The value of « is determined heuristically. Typical
a = 0.1. Convergence is usually very slow.

DIIS:

A list of m densities is first produced using some
other procedure (e.g. simple mixing), and then
subsequent n;; are given by[2]:

m

Ni+1 = chni—j +crieg, T =mn — f(ng)
J=1

where c¢; are the coefficients that minimize
| > cjrj|| such that > ¢; = 1. Convergence is
known to be super linear.
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NONLINEAR EIGENSOLVER

Our method is based on the FEAST algorithm][1],
a method for solving linear eigenvalue problems.
The nonlinear Kohn-Sham equations are solved in
an approximate subspace (), which is updated at
each iteration:

1. Get initial guess for X, the matrix whose
columns are the eigenvectors of interest z;,
and n, either or both of which can be com-
pletely random

2. Get density matrix p via numerical complex
contour integration:
p=¢.(28—H[n])"'dz, ze€C
where C' is a contour around the part of the

real axis where the eigenvalues of the occu-
pied states are expected to be found.

3. Form the subspace ) = pSX

4. Solve the projected, reduced nonlinear eigen-
vector problem

Q' H[n]Qx, = \,Q* SQxz,

by iterating over the density n. This pro-
cecure is computationally inexpensive com-
pared to performing the full SCF iteration.

5. Calculate =z; = Qz,, A\ = Ay and the
new density. If ) \; has converged, exit.
Otherwise, GOTO step 2.

ADVANTAGES

Computational efficiency: The primary computa-
tional costs of our method are mat-vec mul-
tiplication and boundary condition assign-
ment in solving Poisson’s equation, both of
which can easily be parallelized.

No Initial Guess: Our method converges on the
correct result for arbitrary initial guess of
density and subspace

High Convergence rate: Our method converges
significantly faster than DIIS, and the conver-
gence rate remains high regardless of system
size.

RESULTS
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The following is the result of testing done with LDA all-electron DFT using a third order finite elements
discretization. The total energy residual, the relative difference between the calculated total energy at
subsequent iterations, is used as the means of gauging convergence.
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FUTURE WORK

e Parallelize the solution of the subspace prob-
lem Q' H[n]Qx, = \,Q* SQx,. This will be-
come the primary bottleneck for much larger
systems.

Update the FEAST package to provide a
black-box interface for the algorithm de-
scribed above. FEAST 2.0 currently provides
black-box fuctionality for steps 2 and 3 de-
scribed in "Nonlinear Eigensolver.

http:/ /www.ecs.umass.edu/~polizzi/feast/
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