Problem

Solving the Kohn-Sham Equations

\[H[n]x_i = \lambda_i S x_i , \quad n = \sum_i |x_i|^2 \]

Where \(H[n] \) is the typical Kohn-Sham Hamiltonian with (for our work here) spinless LDA approximation, \(x_i, \lambda_i \) are eigenvector/eigenvalue pairs, \(n \) is the electron density, and \(S \) is the mass matrix resulting from a finite elements discretization.

Traditional SCF

The Kohn-Sham equations are traditionally solved using self-consistent field methods that follow the general procedure:

1. Find good initial guess \(n_1 \) (e.g. with Thomas-Fermi model)
2. Get \(n' = f(n_i) \), where \(f(n_i) \) is the procedure consisting of:
 a. Forming the Kohn-Sham hamiltonian \(H[n_i] \) by solving poisson’s equation, calculating the exchange-correlation operator, etc.
 b. Solving the eigenvalue problem \(H[n_i]x_i = \lambda_i S x_i \)
 c. Calculating the new density from the occupied states \(x_i \)
3. Form \(n_{i+1} \) from some function of \(n' \) and \(n_i \). If \(\|n_{i+1} - f(n_{i+1})\| < \epsilon \) then stop; otherwise GOTO step 2.

Simple Mixing:

\[n_{i+1} = \alpha n_i + (1 - \alpha)n' , \quad 0 \leq \alpha \leq 1 \]

The value of \(\alpha \) is determined heuristically. Typical \(\alpha = 0.1 \). Convergence is usually very slow.

DIIS:

A list of \(m \) densities is first produced using some other procedure (e.g. simple mixing), and then subsequent \(n_{i+1} \) are given by[2]:

\[n_{i+1} = \sum_{j=1}^{m} c_i n_{i-j} + c_i n_{i-j} \quad r_i = n_i - f(n_i) \]

where \(c_i \) are the coefficients that minimize \(\| r_i \| \) such that \(\sum c_j = 1 \). Convergence is known to be super linear.

Nonlinear Eigensolver

Our method is based on the FEAST algorithm[1], a method for solving linear eigenvalue problems. The nonlinear Kohn-Sham equations are solved in an approximate subspace \(Q \), which is updated at each iteration:

1. Get initial guess for \(X \), the matrix whose columns are the eigenvectors of interest \(x_i \), and \(n \), either or both of which can be completely random
2. Get density matrix \(\rho \) via numerical complex contour integration:
 \[\rho = \int_{\mathbb{C}} (zI - H[n])^{-1} dz \]
 where \(C \) is a contour around the part of the real axis where the eigenvalues of the occupied states are expected to be found.
3. Form the subspace \(Q = \rho S X \)
4. Solve the projected, reduced nonlinear eigenvector problem
 \[Q^T H[n]Qx_q = \lambda_q Q^T S Qx_q \]
 by iterating over the density \(n \). This procedure is computationally inexpensive compared to performing the full SCF iteration.
5. Calculate \(x_i = Qx_q \), \(\lambda_i = \lambda_q \), and the new density. If \(\sum \lambda_i \) has converged, exit. Otherwise, GOTO step 2.

Advantages

Computational efficiency: The primary computational costs of our method are mat-vec multiplication and boundary condition assignment in solving Poisson’s equation, both of which can easily be parallelized.

No Initial Guess: Our method converges on the correct result for arbitrary initial guess of density and subspace

High Convergence rate: Our method converges significantly faster than DIIS, and the convergence rate remains high regardless of system size.

Future Work

- Parallelize the solution of the subspace problem \(Q^T H[n]Qx_q = \lambda_q Q^T S Qx_q \). This will become the primary bottleneck for much larger systems.
- Update the FEAST package to provide a black-box interface for the algorithm described above. FEAST 2.0 currently provides black-box functionality for steps 2 and 3 described in “Nonlinear Eigensolver.”
- bgavin@ecs.umass.edu, epolizzi@ecs.umass.edu

References

Results

The following is the result of testing done with LDA all-electron DFT using a third order finite elements discretization. The total energy residual, the relative difference between the calculated total energy at subsequent iterations, is used as the means of gauging convergence.