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mics Study

Experimental Observations

Motivation -

« Graphene is a monolayer of sp? bonded carbon
packed in a honey comb lattice. It exhibits many
novel properties such as unusual electronic,
including high electronic mobility, large tunable
band gap, high thermal conductivity, high
mechanical strength and many others.

* Experimental observation of 2-dimentionality of

* Electronic mobility of graphene is seen to be
affected by the amount of rippling in graphene
which gives another degree of freedom In
device engineering?.

 These ripples can also be used to advantage In
steering and manipulation of electrons due to
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of rippling in the out of plane direction?.

« Our study Is preceded by experimental
observation of deviation of surface normal by a
few degrees In n-layered graphene with the
deviations becoming weaker with increasing
number of graphene layers.

Computational Methods & Simulation » Since the rippling is found to be dynamic the local angles on
Parameters Ul e C graphene are computed for several geometrical configurations
et 4 N obtained from the simulation.
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 The grid values were estimated from the original geometrical
configuration by an objective interpolation scheme, Barnes
10. interpolation, which also helps in smoothing of the
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asymmetric.

of the layers are much stronger than the out of
plane interactions.
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