ab initio colors

Stefano Baroni

SISSA — Scuola Internazionale Superiore di Studi Avanzati Trieste — Italy

talk given at ES12: The 24th Annual Workshop on Recent Developments in Electronic Structure Theory Wake Forest University, WInston-Salem NC, June 5-8 2012

stimulus = illuminant × trasmission × sensitivity

stimulus = illuminant × trasmission × sensitivity

Thursday, June 7, 2012

a puzzle for you

a puzzle for you

hint: the solution is contained in one of the previous slides

spectroscopy

 $\kappa(\omega) \propto \omega \operatorname{Im} \alpha(\omega)$

 $\mathsf{d}(\omega) = \alpha(\omega)\mathsf{E}(\omega)$

spectroscopy

 $\kappa(\omega) \propto \omega \operatorname{Im} \alpha(\omega)$

 $d(\omega) = \alpha(\omega) \mathsf{E}(\omega)$ $\alpha(\omega) = \sum_{n \neq 0} \left[\frac{\mathsf{X}_{0n} \mathsf{X}_{n0}}{\omega - E_{n0} + i\delta} - \frac{\mathsf{X}_{0n} \mathsf{X}_{n0}}{\omega + E_{n0} + i\delta} \right]$

spectroscopy

 $\kappa(\omega) \propto \omega \operatorname{Im} \alpha(\omega)$

 $d(\omega) = \alpha(\omega) \mathsf{E}(\omega)$ $\alpha(\omega) = \sum_{n \neq 0} \left[\frac{\mathsf{X}_{0n} \mathsf{X}_{n0}}{\omega - E_{n0} + i\delta} - \frac{\mathsf{X}_{0n} \mathsf{X}_{n0}}{\omega + E_{n0} + i\delta} \right]$

probe -

 $\mathbf{d}(t) = \mathsf{Tr}\big(\mathbf{d}\rho(t)\big)$

optical spectra from TDDF (perturbation) T $\mathbf{d}(t) = \mathsf{Tr}(\mathbf{d}\rho(t))$

 $\rho(t) = \sum |\phi_v(t)\rangle \langle \phi_v(t)|$ $\mathbf{\mathcal{T}}$

optical spectra from TDDF (perturbation) T $\mathbf{d}(t) = \mathsf{Tr}(\mathbf{d}\rho(t))$

$$\rho(t) = \sum_{v} |\phi_v(t)\rangle \langle \phi_v(t)|$$

$$i\frac{\partial\phi_v(\mathbf{r},t)}{\partial t} = \left(-\Delta + v_{KS}(\mathbf{r},t)\right)\phi_v(\mathbf{r},t)$$

Thursday, June 7, 2012

optical spectra from TDDF (perturbation) T $\mathbf{d}(t) = \mathsf{Tr}(\mathbf{d}\rho(t))$

$$\rho(t) = \sum_{v} |\phi_v(t)\rangle \langle \phi_v(t)|$$

$$i\frac{\partial\phi_v(\mathbf{r},t)}{\partial t} = \left(-\Delta + v_{KS}(\mathbf{r},t)\right)\phi_v(\mathbf{r},t)$$

$$i\dot{\rho}(t) = \left[H_{KS}(t), \rho(t)\right]$$

 $i\dot{\rho}(t) = \left[H_{KS}(t), \rho(t)\right]$

 $i\dot{\rho}(t) = \left[H_{KS}(t), \rho(t)\right]$

$$\rho(t) = \rho^{\circ} + \rho'(t)$$
$$H_{KS}(t) = H^{\circ} + V'_{ext}(t) + V'_{HXC}(t)$$

 $i \dot{\rho}' = [H^{\circ}, \rho'] + [V'_{HXC}, \rho^{\circ}] + [V'_{ext}, \rho^{\circ}] + \mathcal{O}(V'^{2})$

$$i\dot{\rho}(t) = \left[H_{KS}(t), \rho(t)\right]$$

$$\rho(t) = \rho^{\circ} + \rho'(t)$$
$$H_{KS}(t) = H^{\circ} + V'_{ext}(t) + V'_{HXC}(t)$$

$$i \dot{\rho}' = [H^{\circ}, \rho'] + [V'_{HXC}(\rho'), \rho^{\circ}] + [V'_{ext}, \rho^{\circ}]$$

$$i \dot{\rho}' = \mathcal{L} \rho' + [V'_{ext}, \rho^{\circ}]$$

$$i\dot{\rho}(t) = \left[H_{KS}(t), \rho(t)\right]$$

$$\rho(t) = \rho^{\circ} + \rho'(t)$$
$$H_{KS}(t) = H^{\circ} + V'_{ext}(t) + V'_{HXC}(t)$$

$$i \dot{\rho}' = [H^{\circ}, \rho'] + [V'_{HXC}(\rho'), \rho^{\circ}] + [V'_{ext}, \rho^{\circ}]$$

$$(\omega - \mathcal{L})\tilde{\rho}'(\omega) = [\tilde{V}'_{ext}(\omega), \rho^{\circ}]$$

 $(\omega - \mathcal{L})\tilde{\rho}'(\omega) = [\tilde{V}'_{ext}(\omega), \rho^{\circ}]$

$$(\omega - \mathcal{L})\tilde{\rho}'(\omega) = [\tilde{V}_{ext}'(\omega), \rho^{\circ}]$$

$\boldsymbol{\alpha}(\omega) = \operatorname{Tr}(\mathbf{d}\tilde{\rho}'(\omega))$

$$(\omega - \mathcal{L})\tilde{\rho}'(\omega) = [\tilde{V}_{ext}'(\omega), \rho^{\circ}]$$

$\begin{aligned} \boldsymbol{\alpha}(\omega) &= \operatorname{Tr}(\mathbf{d}\tilde{\rho}'(\omega)) \\ &= \left(\mathbf{d}, (\omega - \mathcal{L})^{-1} \cdot [\tilde{V}_{ext}'(\omega), \rho^{\circ}]\right) \end{aligned}$

$$(\omega - \mathcal{L})\tilde{\rho}'(\omega) = [\tilde{V}_{ext}'(\omega), \rho^{\circ}]$$

$$\begin{split} \boldsymbol{\alpha}(\omega) &= \operatorname{Tr} \big(\mathbf{d} \tilde{\rho}'(\omega) \big) \\ &= \left(\mathbf{d}, (\omega - \mathcal{L})^{-1} \cdot [\tilde{V}_{ext}'(\omega), \rho^{\circ}] \right) \\ &\equiv \left(\boldsymbol{u}, (\omega - \mathcal{L})^{-1} \cdot \boldsymbol{v} \right) \end{split}$$

$$g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle$$

 $g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle$

J. Phys. C: Solid State Phys., Vol. 5, 1972. Printed in Great Britain. © 1972

Electronic structure based on the local atomic environment for tight-binding bands

R HAYDOCK, VOLKER HEINE and M J KELLY Cavendish Laboratory, Cambridge, UK

$$g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle$$

$$\phi_{-1} = 0$$

$$b_{n+1}\phi_{n+1} = (\mathcal{H} - a_n)\phi_n - b_n\phi_{n-1}$$

$$\langle \phi_{n+1} | \phi_{n+1} \rangle = 1$$

$$a_n = \langle \phi_n | \mathcal{H} | \phi_n \rangle$$

$$g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle$$

$$\phi_{-1} = 0$$

$$b_{n+1}\phi_{n+1} = (\mathcal{H} - a_n)\phi_n - b_n\phi_{n-1}$$

$$\langle \phi_{n+1} | \phi_{n+1} \rangle = 1$$

$$a_n = \langle \phi_n | \mathcal{H} | \phi_n \rangle$$

$$\mathcal{H} = \begin{pmatrix} a_0 & b_1 & 0 & \cdots & 0 \\ b_1 & a_1 & b_2 & 0 & \vdots \\ 0 & b_2 & a_2 & \ddots & 0 \\ \vdots & 0 & \ddots & \ddots & b_n \\ 0 & \cdots & 0 & b_n & a_n \end{pmatrix}$$

 $g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle$

$$g(\omega) = \frac{1}{\omega - a_0 + \frac{b_1^2}{\omega - a_1 + \frac{b_2^2}{\omega - a_2 + \cdots}}}$$

 a_0

 b_1

0

 $\vdots \\ 0$

 $\mathcal{H} =$

the DFPT representation

$$\begin{split} \tilde{\rho}'(\omega) &= \begin{pmatrix} 0 & Y^{\dagger} \\ X & 0 \end{pmatrix}^{\mathsf{v}}_{\mathsf{c}} \\ & \mathsf{v} & \mathsf{c} \end{split}$$

the DFPT representation

$$\tilde{\rho}'(\omega) = \sum_{cv} \left(X_{cv}(\omega) |\varphi_c^{\circ}\rangle \langle \varphi_v^{\circ}| + Y_{cv}(\omega) |\varphi_v^{\circ}\rangle \langle \varphi_c^{\circ}| \right)$$

$$\begin{split} \tilde{\rho}'(\omega) &= \sum_{cv} \left(X_{cv}(\omega) |\varphi_c^{\circ}\rangle \langle \varphi_v^{\circ}| + Y_{cv}(\omega) |\varphi_v^{\circ}\rangle \langle \varphi_c^{\circ}| \right) \\ &= \sum_{v} \left(|\varphi_v'(\omega)\rangle \langle \varphi_v^{\circ}| + |\varphi_v^{\circ}\rangle \langle \varphi_v'(-\omega)| \right) \end{split}$$

$$\begin{split} \tilde{\rho}'(\omega) &= \sum_{cv} \left(X_{cv}(\omega) |\varphi_c^{\circ}\rangle \langle \varphi_v^{\circ}| + Y_{cv}(\omega) |\varphi_v^{\circ}\rangle \langle \varphi_c^{\circ}| \right) \\ &= \sum_{v} \left(|\varphi_v'(\omega)\rangle \langle \varphi_v^{\circ}| + |\varphi_v^{\circ}\rangle \langle \varphi_v'(-\omega)| \right) \end{split}$$

 $|\{x_v(\mathbf{r})\}, \{y_v(\mathbf{r})\}\rangle$

$$P_v \boldsymbol{x_v} = P_v \boldsymbol{y_v} = 0$$

$$\begin{split} \tilde{\rho}'(\omega) &= \sum_{cv} \left(X_{cv}(\omega) |\varphi_c^{\circ}\rangle \langle \varphi_v^{\circ}| + Y_{cv}(\omega) |\varphi_v^{\circ}\rangle \langle \varphi_c^{\circ}| \right) \\ &= \sum_{v} \left(|\varphi_v'(\omega)\rangle \langle \varphi_v^{\circ}| + |\varphi_v^{\circ}\rangle \langle \varphi_v'(-\omega)| \right) \end{split}$$

 $|\{x_v(\mathbf{r})\}, \{y_v(\mathbf{r})\}\rangle$

$$P_v \boldsymbol{x_v} = P_v \boldsymbol{y_v} = 0$$

$$\begin{aligned} \mathcal{L}_{\tau} \tilde{\rho}' & \Rightarrow \quad \{H^{\circ} x_{v}(\mathbf{r})\} \\ \mathcal{L}^{\tau} \tilde{\rho}' & \Rightarrow \quad \{H^{\circ} y_{v}(\mathbf{r})\} \end{aligned} \& \quad \{V'_{ee}(\mathbf{r})\varphi^{\circ}_{v}(\mathbf{r})\} \end{aligned}$$

$$\begin{split} \tilde{\rho}'(\omega) &= \sum_{cv} \left(X_{cv}(\omega) |\varphi_c^{\circ}\rangle \langle \varphi_v^{\circ}| + Y_{cv}(\omega) |\varphi_v^{\circ}\rangle \langle \varphi_c^{\circ}| \right) \\ &= \sum_{v} \left(|\varphi_v'(\omega)\rangle \langle \varphi_v^{\circ}| + |\varphi_v^{\circ}\rangle \langle \varphi_v'(-\omega)| \right) \end{split}$$

 $|\{x_v(\mathbf{r})\}, \{y_v(\mathbf{r})\}\rangle$

$$P_v \boldsymbol{x_v} = P_v \boldsymbol{y_v} = 0$$

$$\begin{aligned} \mathcal{L}_{\tau} \tilde{\rho}' \\ \mathcal{L}_{\tau} \tilde{\rho}' \end{aligned} & \Rightarrow \begin{cases} H^{\circ} x_{v}(\mathbf{r}) \\ \{H^{\circ} y_{v}(\mathbf{r}) \end{cases} & \& \quad \{V'_{ee}(\mathbf{r}) \varphi^{\circ}_{v}(\mathbf{r}) \} \end{aligned}$$

$$n'(\mathbf{r}) = \frac{1}{2} \sum_{v} \left(x_v(\mathbf{r}) + y_v(\mathbf{r}) \right) \varphi_v^{\circ}(\mathbf{r})$$

no extrapolation

Thursday, June 7, 2012

no extrapolation

extrapolation

chlorofyll a

$C_{55}H_{72}MgN_4O$

chlorofyll a

chlorofyll a

color and function of anthocyanins

color and function of anthocyanins

color and function of anthocyanins

C₂₁H₂₁O₁₁Cl@(H₂O)₉₅ 339 atoms 938 electrons

optical effects of intramolecular motion

O.B. Malcioğlu, A. Calzolari, R. Gebauer, D. Varsano, and S.B., JACS 133, 15425 (2011)
 O.B. Malcioğlu, R. Gebauer, D. Rocca, and S.B., CPC 182, 1744 (2011)

everything's fine?

no Coulombic tail in the eh interaction

- no Rydberg states in molecules
- no excitons in extended systems
- wrong charge-transfer excitations

no Coulombic tail in the eh interaction

- no Rydberg states in molecules
- no excitons in extended systems
- wrong charge-transfer excitations

the fix

- exotic frequency-dependent functionals
- non-local (Fock) exchange
 - hybrid functionals
 - BSE equation

no Coulombic tail in the eh interaction

- no Rydberg states in molecules
- no excitons in extended systems
- wrong charge-transfer excitations

the fix

- exotic frequency-dependent functionals
- non-local (Fock) exchange
 - hybrid functionals
 - BSE equation

THE JOURNAL OF CHEMICAL PHYSICS 133, 164109 (2010)

Ab initio calculations of optical absorption spectra: Solution of the Bethe–Salpeter equation within density matrix perturbation theory

Dario Rocca,^{1,a)} Deyu Lu,^{1,b)} and Giulia Galli^{1,2} ¹Department of Chemistry, University of California, Davis, Davis, California 95616, USA ²Department of Physics, University of California, Davis, Davis, California 95616, USA

(Received 28 May 2010; accepted 8 September 2010; published online 27 October 2010)

no Coulombic tail in the eh interaction

- no Rydberg states in molecules
- no excitons in extended systems
- wrong charge-transfer excitations

the fix

- exotic frequency-dependent functionals
- non-local (Fock) exchange
 - hybrid functionals
 - BSE equation

THE JOURNAL OF CHEMICAL PHYSICS 133, 164109 (2010)

Ab initio calculations of optical absorption spectra: Solution of the Bethe–Salpeter equation within density matrix perturbation theory

Dario Rocca,^{1,a)} Deyu Lu,^{1,b)} and Giulia Galli^{1,2} ¹Department of Chemistry, University of California, Davis, Davis, California 95616, USA ²Department of Physics, University of California, Davis, Davis, California 95616, USA

(Received 28 May 2010; accepted 8 September 2010; published online 27 October 2010)

more on this line to follow ...

PROJECT DOWNLOAD RESOURCES PSEUDOPOTENTIALS CONTACTS NEWS & EVENTS

SEARCH

Search	2
	Forum
	-

News

17.05.2012

Quantum ESPRESSO 5.0

Version 5.0 of Quantum ESPRESSO is available for download.

1.05.2012

New web site is online

Old site is stil reachable at the following address: testwp.qe-forge.it

15.02.2012 Quantum ESPRESSO Events 2012

2nd African School on 'Electronic Structure Methods and Applications' (ASESMA 2012) Eldoret, Kenya, May 28 – June 8

Quantum ESPRESSO Workshop, Pennsylvania State University, Jun 25 – Jun 29

Joint ICTP-TWAS Caribbean School on Electronic Structure Fundamentals and Methodologies (an Ab-initio Perspective) Cartagena, Colombia, August 27 – September 21

Spatially Extended Kondo State in Magnetic Molecules Induced by Interfacial Charge Transfer. Phys. Rev. Lett. 105 106601 (2010). Courtesy of H. Kulik.

Quantum ESPRESSO is an integrated suite of Open-Source computer

codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials.

READ MORE >

RESOURCES PSEUDOPOTENTIALS CONTACTS NEWS & EVENTS

SEARCH

www.quantum-espresso.org

New web site is online the home of innovation

in electronic-structure theory and simulation

Methods and Applications' (ASESMA 2012) Eldoret, Kenya, May 28 - June 8

J. Phys.: Condens. Matter **21** (2009) 395502 (19pp)

doi:10.1088/0953-8984/21/39/395502

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

Paolo Giannozzi^{1,2}, Stefano Baroni^{1,3}, Nicola Bonini⁴, Matteo Calandra⁵, Roberto Car⁶, Carlo Cavazzoni^{7,8}, Davide Ceresoli⁴, Guido L Chiarotti⁹, Matteo Cococcioni¹⁰, Ismaila Dabo¹¹, Andrea Dal Corso^{1,3}, Stefano de Gironcoli^{1,3}, Stefano Fabris^{1,3}, Guido Fratesi¹², Ralph Gebauer^{1,13}, Uwe Gerstmann¹⁴, Christos Gougoussis⁵, Anton Kokalj^{1,15}, Michele Lazzeri⁵, Layla Martin-Samos¹, Nicola Marzari⁴, Francesco Mauri⁵, Riccardo Mazzarello¹⁶, Stefano Paolini^{3,9}, Alfredo Pasquarello^{17,18}, Lorenzo Paulatto^{1,3}, Carlo Sbraccia^{1,†}, Sandro Scandolo^{1,13}, Gabriele Sclauzero^{1,3}, Ari P Seitsonen⁵, Alexander Smogunov¹³, Paolo Umari¹ and Renata M Wentzcovitch^{10,19} J. Phys.: Condens. Matter **21** (2009) 395502 (19pp)

doi:10.1088/0953-8984/21/39/395502

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulation of the simulation

Paolo Giannozzi^{1,2}, Stefano Baroni^{1,3}, Nicola Bonini⁴, Matteo Calandra⁵, Roberto Car⁶, Carlo Cavazzoni^{7,8}, Davide Ceresoli⁴, Guido L Chiarotti⁹ Matter Cococcioni¹⁰, Ismaila Dabo¹¹, A. Grei I al Corso¹, Stefano da diran oli^{1,3}, 2010 Stefano Fabris^{1,3}, Caido I ratest², K lph Gebas and 1, Uwe Gerstmann¹⁴, Christos Gougoussis⁵, Anton Kokalj^{1,15}, Michele Lazzeri⁵, Layla Martin-Samos¹, Nicola Marzari⁴, Francesco Mauri⁵, Riccardo Mazzarello¹⁶, Stefano Paolini^{3,9}, Alfredo Pasquarello^{17,18}, Lorenzo Paulatto^{1,3}, Carlo Sbraccia^{1,†}, Sandro Scandolo^{1,13}, Gabriele Sclauzero^{1,3}, Ari P Seitsonen⁵, Alexander Smogunov¹³, Paolo Umari¹ and Renata M Wentzcovitch^{10,19}

these slides at http://talks.baroni.me

That's all Folks /