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what	  color	  is	  all	  about

anycolor(λ)	  =	  r(λ)	  +	  g(λ)	  +	  b(λ)
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what	  makes	  things	  gliNer	  the	  way	  they	  do

sPmulus	  =	  
illuminant	  ×	  trasmission	  ×	  sensiPvity

Thursday, June 7, 2012



what	  makes	  things	  gliNer	  the	  way	  they	  do

sPmulus	  =	  
illuminant	  ×	  trasmission	  ×	  sensiPvity

Thursday, June 7, 2012



S(λ)

what	  makes	  things	  gliNer	  the	  way	  they	  do

sPmulus	  =	  
illuminant	  ×	  trasmission	  ×	  sensiPvity

!

!"#
!

$"#
!

""#
!

%"#
!

&"#
'()*+,

-./01234(
560.7(589:47;+!"#$

Thursday, June 7, 2012



S(λ)× e−κ(λ)x
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RGB(x) =

�
S(λ)e−κ(λ)xrgb(λ)dλ

what	  makes	  things	  gliNer	  the	  way	  they	  do
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a	  puzzle	  for	  you
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a	  puzzle	  for	  you

hint:	  the	  soluPon	  is	  contained	  
in	  one	  of	  the	  previous	  slides
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d(ω) = α(ω)E(ω)

κ(ω) ∝ ω Imα(ω)

spectroscopy

Thursday, June 7, 2012



d(ω) = α(ω)E(ω)

κ(ω) ∝ ω Imα(ω)

spectroscopy
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d(ω) = α(ω)E(ω)

κ(ω) ∝ ω Imα(ω)

spectroscopy

system⇝ ⇝probe response

α(ω) =
�

n �=0

�
X0nXn0

ω − En0 + iδ
− X0nXn0

ω + En0 + iδ
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opPcal	  spectra	  from	  TDDF	  (perturbaPon)	  T

d(t) = Tr
�
dρ(t)

�
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opPcal	  spectra	  from	  TDDF	  (perturbaPon)	  T

(ω − L)ρ̃�(ω) = [Ṽ �
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opPcal	  spectra	  from	  TDDF	  (perturbaPon)	  T

(ω − L)ρ̃�(ω) = [Ṽ �
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ext(ω), ρ◦]

≡
�
u, (ω − L)−1 · v

�
=

�
d, (ω − L)−1 · [Ṽ �

ext(ω), ρ◦]
�

α(ω) = Tr
�
dρ̃�(ω)

�

Thursday, June 7, 2012



the	  Lanczos	  connecPon

g(ω) = �φ0|(ω −H)−1
|φ0�

Thursday, June 7, 2012



J. Phys. C :  Solid State Phys., Vol. 5 ,  1972. Printed in Great Britain. @ 1972 

Electronic structure based on the local atomic 
environment for tight-binding bands 

R HAYDOCK, VOLKER HEINE and M J KELLY 

Cavendish Laboratory, Cambridge, UK 

MS received 23 June 1972 

Abstract. Some new methods are presented for calculating the density of states n(E) and 

other aspects of electronic structure in a tight-binding band, without use of Bloch’s theorem 

or the band structure E(k) .  The methods are therefore applicable to calculating the local 

density of states at surfaces, impurities etc and relate the electronic structure to the local 

atomic environment. They depcnd on developing the Green function as an infinite continued 

fraction. There is no difficulty in obtaining n(E) in a few minutes computing time correct to 
the first 50 moments for an s band and 10 moments for d bands. The present paper discusses 

the methods and ideas, with specific applications to follow. 

1. Electronic structure and local environment 

The present work concerns calculating the electronic structure of a solid when this can 
be represented in a tight-binding formalism (or the lattice vibrations in a force constant 
model). The method does not involve the use of Bloch’s theorem or the band structure 
E(k)  in any way. Instead, the electronic structure at one atomic site is related to the local 
environment of near neighbouring atoms. The method can therefore be applied to the 
electronic structure at a surface, with or without an adsorbed atom, or at an impurity 
in the bulk. Even for the bulk properties of a perfect crystal the method may have some 

advantages. Firstly the density of states n(E)  is obtained as an analytic expression 
without sampling E(k). Secondly the electronic structure is related to the chemical bond- 
ing of an atom to its near neighbours, and the variation of the bond order through the 
band can be obtained for example. The transport properties of solids are most naturally 
discussed in terms of E(k) with the machinery of Fermi surfaces, effective masses, electrons 
and holes. But in other situations the wavevector k may be irrelevant, a given property 
depending perhaps on just the density of states. Our method will be used to discuss how 
large a cluster of similar atoms is required before the central atom behaves the same way 
as in bulk material. It is equally applicable to a finite cluster with a small number of 
atoms, as to an infinite solid. It seems the method might also be used for disordered alloys 
and random structures. Specific applications currently under study in Cambridge include 
the electronic structure of transition metals at a surface, the relatihe energies of different 

phases for transition metals, in particular some complex alloy phases, the atomic 
moments in magnetic alloys, and lattice vibrations at surfaces. 

In order to discuss electronic structure when perfect periodicity is lacking, Friedel 
introduced the ‘local density of states’ (Friedel 1954, Kittel 1963, p 339. Heine and 
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φ−1 = 0
bn+1φn+1 = (H− an)φn − bnφn−1
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color	  and	  funcPon	  of	  anthocyanins

cyanidin-‐3-‐glucoside
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C21H21O11Cl@(H2O)95
339	  atoms
938	  electrons
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Ab initio calculations of optical absorption spectra: Solution of the
Bethe–Salpeter equation within density matrix perturbation theory

Dario Rocca,1,a! Deyu Lu,1,b! and Giulia Galli1,2
1Department of Chemistry, University of California, Davis, Davis, California 95616, USA
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We describe an ab initio approach to compute the optical absorption spectra of molecules and solids,
which is suitable for the study of large systems and gives access to spectra within a wide energy
range. In this approach, the quantum Liouville equation is solved iteratively within first order
perturbation theory, with a Hamiltonian containing a static self-energy operator. This procedure is
equivalent to solving the statically screened Bethe–Salpeter equation. Explicit calculations of single
particle excited states and inversion of dielectric matrices are avoided using techniques based on
density functional perturbation theory. In this way, full absorption spectra may be obtained with a
computational workload comparable to ground state Hartree–Fock calculations. We present results
for small molecules, for the spectra of a 1 nm Si cluster in a wide energy range !20 eV", and for a
dipeptide exhibiting charge transfer excitations. © 2010 American Institute of Physics.
#doi:10.1063/1.3494540$

I. INTRODUCTION

Spectroscopy is a key tool to characterize materials and
nanostructures and the comparison of computed and mea-
sured spectra may greatly help interpret experimental data
and validate theories and models.1–3 In particular, knowledge
of optical absorption spectra is of fundamental importance in
many instances; for example, measurements and predictions
of absorption spectra of candidate photoelectrodes are keys
to understand how to optimize the absorption of sunlight by
specific materials.4,5 Unfortunately, in spite of important, re-
cent progress,2 the calculation of absorption spectra from
first principles remains a challenging problem.

In the quantum chemistry community, optical absorption
spectra are often computed with correlated methods such as
coupled-cluster. These are limited to molecules with few at-
oms, especially if good quality basis sets are desired. The
condensed matter physics community has mostly focused on
time-dependent density functional theory !TDDFT"6 and
many-body perturbation theory !MBPT".2,7 While TDDFT in
the adiabatic local density approximation !LDA" and gener-
alized gradient approximation !GGA" has been successfully
applied to molecules and clusters, this theory may become
inaccurate when electron-hole !e-h" interactions play an im-
portant role, e.g., in bulk insulators and semiconductors or in
finite systems where charge transfer excitations are present.
On the other hand, MBPT within a Green’s function formal-
ism may describe excitation properties of both solids and
molecules. Calculations using MBPT involve evaluating
Kohn–Sham !KS" orbitals8 and then applying self-energy
corrections, for example, at the so called GW level9 !G de-
notes the Green function and W the screened Coulomb inter-

action". The Bethe–Salpeter equation !BSE" may then be
solved, e.g., starting from quasiparticle energies and wave
functions.

Solving the BSE is considered the state-of-the-art ap-
proach to the computation of absorption spectra of bulk
materials2,7,10,11 and it has been applied to many systems,
including silicon, germanium, diamond, GaAs, and LiF; in
addition, several applications of the BSE to systems with
reduced dimensionalities have appeared in the literature and
these include graphene,12 carbon and boron nitride
nanotubes,13,14 and finite systems, such as small sodium clus-
ters and benzene and azobenzene molecules.15,16

Current techniques to solve the BSE use an electron-hole
basis set and involve the computation of a multitude of
single particle unoccupied states and the inversion of dielec-
tric matrices.2,7 Both operations may become prohibitively
expensive, from a computational point of view, even for
small molecules17 and clusters, and their scaling as a func-
tion of the number of basis functions and of unoccupied
states hamper the applicability of MBPT to nanostructured
materials, e.g., for photovoltaic applications. It is therefore
highly desirable to develop algorithms to solve the BSE that
are scalable to large systems !e.g., containing hundreds of
electrons" without resorting to approximations such as trun-
cation of the number of unoccupied states and number of
basis set functions.

Here we present a new approach to compute the absorp-
tion spectra of finite and periodic systems, based on the it-
erative solution of the quantum Liouville equation within
first order perturbation theory, and with a Hamiltonian con-
taining a static self-energy operator. Techniques based on
density functional perturbation theory18 !DFPT" are used to
avoid inverting dielectric matrices19,20 and explicit computa-
tion of single particle unoccupied orbitals.21,22 This allows

a"Electronic mail: drocca@ucdavis.edu.
b"Present address: Center for Functional Nanomaterials, Brookhaven Na-

tional Laboratory, Upton, New York 11973, USA.
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5 Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie
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