ab initio colors

Stefano Baroni

SISSA — Scuola Internazionale Superiore di Studi Avanzati
Trieste — Italy

talk given at ES12: The 24th Annual Workshop on Recent Developments in Electronic Structure Theory
Wake Forest University, Winston-Salem NC, June 5-8 2012
what color is all about

\[\text{anycolor}(\lambda) = r(\lambda) + g(\lambda) + b(\lambda) \]
what makes things glitter the way they do

stimulus = illuminant \times trasmission \times sensitivity
what makes things glitter the way they do

stimulus = illuminant × trasmission × sensitivity
what makes things glitter the way they do

stimulus = illuminant × transmission × sensitivity

S(λ)
what makes things glitter the way they do

stimulus = illuminant × trasmission × sensitivity

\[S(\lambda) \times e^{-\kappa(\lambda) x} \]
what makes things glitter the way they do

stimulus =
illuminant \times \text{transmission} \times \text{sensitivity}

S(\lambda) \times e^{-\kappa(\lambda)x} \times \operatorname{rgb}(\lambda)
what makes things glitter the way they do

\[\text{RGB}(x) = \int S(\lambda)e^{-\kappa(\lambda)x} \text{rgb}(\lambda) \, d\lambda \]
a puzzle for you
a puzzle for you

hint: the solution is contained in one of the previous slides
spectroscopy

\[\kappa(\omega) \propto \omega \text{Im}\alpha(\omega) \]

\[d(\omega) = \alpha(\omega)E(\omega) \]
\[\kappa(\omega) \propto \omega \text{Im}\alpha(\omega) \]

\[d(\omega) = \alpha(\omega)E(\omega) \]

\[\alpha(\omega) = \sum_{n \neq 0} \left[\frac{X_{0n}X_{n0}}{\omega - E_{n0} + i\delta} - \frac{X_{0n}X_{n0}}{\omega + E_{n0} + i\delta} \right] \]

\[\text{Im}\alpha(\omega) \]

\[|X_{n0}|^2 \]

\[\Gamma_n \]

\[E_{n0} \]
spectroscopy

\[\kappa(\omega) \propto \omega \text{Im} \alpha(\omega) \]

\[\mathbf{d}(\omega) = \alpha(\omega) \mathbf{E}(\omega) \]

\[\alpha(\omega) = \sum_{n \neq 0} \left[\frac{X_{0n}X_{n0}}{\omega - E_{n0} + i\delta} - \frac{X_{0n}X_{n0}}{\omega + E_{n0} + i\delta} \right] \]

probe \rightarrow system \rightarrow response
optical spectra from TDDF (perturbation) T

\[d(t) = \text{Tr}(d\rho(t)) \]
optical spectra from TDDF (perturbation) T

\[d(t) = \text{Tr}(d\rho(t)) \]

\[\rho(t) = \sum_v |\phi_v(t)\rangle \langle \phi_v(t)| \]
optical spectra from TDDF (perturbation) T

\[d(t) = \text{Tr}(d\rho(t)) \]

\[\rho(t) = \sum_v |\phi_v(t)\rangle \langle \phi_v(t)| \]

\[i \frac{\partial \phi_v(\mathbf{r}, t)}{\partial t} = (-\Delta + v_{KS}(\mathbf{r}, t)) \phi_v(\mathbf{r}, t) \]
optical spectra from TDDF (perturbation) T

\[d(t) = \text{Tr}(d\rho(t)) \]

\[\rho(t) = \sum_v |\phi_v(t)\rangle\langle\phi_v(t)| \]

\[i \frac{\partial \phi_v(r, t)}{\partial t} = (-\Delta + v_{KS}(r, t)) \phi_v(r, t) \]

\[i \dot{\rho}(t) = [H_{KS}(t), \rho(t)] \]
optical spectra from TDDF (perturbation) T

\[i \dot{\rho}(t) = [H_{KS}(t), \rho(t)] \]
optical spectra from TDDF (perturbation) T

\[
i \dot{\rho}(t) = [H_{KS}(t), \rho(t)]
\]

\[
\rho(t) = \rho^\circ + \rho^\prime(t)
\]

\[
H_{KS}(t) = H^\circ + V^\prime_{ext}(t) + V^\prime_{HXC}(t)
\]

\[
i \rho^\prime = [H^\circ, \rho^\prime] + [V^\prime_{HXC}, \rho^\circ] + [V^\prime_{ext}, \rho^\circ] + \mathcal{O}(V^{'2})
\]
optical spectra from TDDF (perturbation) T

\[
i \dot{\rho}(t) = [H_{KS}(t), \rho(t)]
\]

\[
\rho(t) = \rho^o + \rho'(t)
\]

\[
H_{KS}(t) = H^o + V'_{ext}(t) + V'_{HXC}(t)
\]

\[
i \dot{\rho}' = [H^o, \rho'] + [V'_{HXC}(\rho'), \rho^o] + [V'_{ext}, \rho^o]
\]

\[
i \dot{\rho}' = \mathcal{L} \rho' + [V'_{ext}, \rho^o]
\]
optical spectra from TDDF (perturbation) T

\[
i \dot{\rho}(t) = [H_{KS}(t), \rho(t)]
\]

\[
\rho(t) = \rho^\circ + \rho'(t)
\]
\[
H_{KS}(t) = H^\circ + V'_{ext}(t) + V'_{HXC}(t)
\]

\[
i \dot{\rho}' = [H^\circ, \rho'] + [V'_{HXC}(\rho'), \rho^\circ] + [V'_{ext}, \rho^\circ]
\]

\[
(\omega - \mathcal{L})\tilde{\rho}'(\omega) = [\tilde{V}'_{ext}(\omega), \rho^\circ]
\]
optical spectra from TDDF (perturbation) T

\[(\omega - \mathcal{L})\tilde{\rho}'(\omega) = [\tilde{V}_{ext}'(\omega), \rho^\circ]\]
optical spectra from TDDF (perturbation) T

$$(\omega - \mathcal{L})\tilde{\rho}'(\omega) = \left[\tilde{V}'_{ext}(\omega), \rho^\circ\right]$$

$$\alpha(\omega) = \text{Tr}(d\tilde{\rho}'(\omega))$$
optical spectra from TDDF (perturbation) T

\[(\omega - \mathcal{L})\tilde{\rho}'(\omega) = [\tilde{V}'_{ext}(\omega), \rho^\circ]\]

\[\alpha(\omega) = \text{Tr}(d\tilde{\rho}'(\omega))\]

\[= (d, (\omega - \mathcal{L})^{-1} \cdot [\tilde{V}'_{ext}(\omega), \rho^\circ])\]
optical spectra from TDDF (perturbation) T

\[(\omega - \mathcal{L}) \tilde{\rho}'(\omega) = [\tilde{V}'_{ext}(\omega), \rho^\circ] \]

\[\alpha(\omega) = \text{Tr}(d\tilde{\rho}'(\omega)) \]

\[= (d, (\omega - \mathcal{L})^{-1} \cdot [\tilde{V}'_{ext}(\omega), \rho^\circ]) \]

\[\equiv (u, (\omega - \mathcal{L})^{-1} \cdot v) \]
the Lanczos connection

\[g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle \]
the Lanczos connection

\[g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle \]

Electronic structure based on the local atomic environment for tight-binding bands

R HAYDOCK, VOLKER HEINE and M J KELLY
Cavendish Laboratory, Cambridge, UK
the Lanczos connection

\[g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle \]

\[\phi_{-1} = 0 \]

\[b_{n+1} \phi_{n+1} = (\mathcal{H} - a_n) \phi_n - b_n \phi_{n-1} \]

\[\langle \phi_{n+1} | \phi_{n+1} \rangle = 1 \]

\[a_n = \langle \phi_n | \mathcal{H} | \phi_n \rangle \]
the Lanczos connection

\[g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle \]

\[
\begin{align*}
\phi_{-1} & = 0 \\
 b_{n+1} \phi_{n+1} & = (\mathcal{H} - a_n) \phi_n - b_n \phi_{n-1} \\
\langle \phi_{n+1} | \phi_{n+1} \rangle & = 1 \\
a_n & = \langle \phi_n | \mathcal{H} | \phi_n \rangle
\end{align*}
\]

\[\mathcal{H} = \begin{pmatrix}
 a_0 & b_1 & 0 & \cdots & 0 \\
 b_1 & a_1 & b_2 & 0 & \cdots \\
 0 & b_2 & a_2 & \ddots & 0 \\
 \vdots & 0 & \ddots & \ddots & b_n \\
 0 & \cdots & 0 & b_n & a_n
\end{pmatrix} \]
the Lanczos connection

\[g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle \]

\[\mathcal{H} = \begin{pmatrix} a_0 & b_1 & 0 & \cdots & 0 \\ b_1 & a_1 & b_2 & 0 & \vdots \\ 0 & b_2 & a_2 & \ddots & 0 \\ \vdots & 0 & \ddots & \ddots & b_n \\ 0 & \cdots & 0 & b_n & a_n \end{pmatrix} \]
the Lanczos connection

\[g(\omega) = \langle \phi_0 | (\omega - \mathcal{H})^{-1} | \phi_0 \rangle \]
the DFPT representation

\[\tilde{\rho}'(\omega) = \left(\begin{array}{cc} 0 & Y^\dagger \\ X & 0 \end{array} \right) \]
\[\tilde{\rho}'(\omega) = \sum_{cv} \left(X_{cv}(\omega) \left| \varphi_c^\circ \right\rangle \left\langle \varphi_v^\circ \right| + Y_{cv}(\omega) \left| \varphi_v^\circ \right\rangle \left\langle \varphi_c^\circ \right| \right) \]
the DFPT representation

\[\tilde{\rho}'(\omega) = \sum_{cv} \left(X_{cv}(\omega) |\phi_c^o\rangle \langle \phi_v^o| + Y_{cv}(\omega) |\phi_v^o\rangle \langle \phi_c^o| \right) \]

\[= \sum_v \left(|\phi_v'(\omega)\rangle \langle \phi_v^o| + |\phi_v^o\rangle \langle \phi_v'(-\omega)| \right) \]
\[\tilde{\rho}'(\omega) = \sum_{cv} \left(X_{cv}(\omega) |\varphi_c^o\rangle \langle \varphi_v^o| + Y_{cv}(\omega) |\varphi_v^o\rangle \langle \varphi_c^o| \right) \]

\[= \sum_v \left(|\varphi'_v(\omega)\rangle \langle \varphi_v^o| + |\varphi_v^o\rangle \langle \varphi'_v(-\omega)| \right) \]

\[|\{x_v(r)\}, \{y_v(r)\}\rangle \]

\[P_v x_v = P_v y_v = 0 \]
the DFPT representation

\[\tilde{\rho}'(\omega) = \sum_{cv} (X_{cv}(\omega)\varphi_\omega^\circ \langle \varphi_v^\circ | + Y_{cv}(\omega)\varphi_v^\circ \langle \varphi_\omega^\circ |) \]

\[= \sum_v \left(|\varphi'_v(\omega)\rangle \langle \varphi_v^\circ | + |\varphi_v^\circ \rangle \langle \varphi'_v(-\omega)| \right) \]

\[\{x_v(r)\}, \{y_v(r)\} \]

\[P_v x_v = P_v y_v = 0 \]

\[\mathcal{L} \tilde{\rho}' \quad \mathcal{L}^\top \tilde{\rho}' \quad \Rightarrow \quad \{H^\circ x_v(r)\} \quad \& \quad \{V'_ee(r)\varphi_v^\circ(r)\} \]
the DFPT representation

\[\tilde{\rho}'(\omega) = \sum_{cv} \left(X_{cv}(\omega) | \varphi_v^0 \rangle \langle \varphi_v^0 | + Y_{cv}(\omega) | \varphi_v^0 \rangle \langle \varphi_v^0 | \right) = \sum_{v} \left(| \varphi'_v(\omega) \rangle \langle \varphi_v^0 | + | \varphi_v^0 \rangle \langle \varphi'_v(-\omega) | \right) \]

\[| \{ x_v(\mathbf{r}) \}, \{ y_v(\mathbf{r}) \} \rangle \]

\[P_v x_v = P_v y_v = 0 \]

\[\mathcal{L} \tilde{\rho}' \quad \mathcal{L}^\top \tilde{\rho}' \quad \Rightarrow \quad \{ H^\circ x_v(\mathbf{r}) \} \quad \& \quad \{ V_{ee}(\mathbf{r}) \varphi_v^0(\mathbf{r}) \} \]

\[n'(\mathbf{r}) = \frac{1}{2} \sum_{v} (x_v(\mathbf{r}) + y_v(\mathbf{r})) \varphi_v^0(\mathbf{r}) \]
benzene, a benchmark

\[\text{Im}(\omega) \] for benzene with US PP's - $E_{\text{cut}}=30$ Ry

\[\omega \text{ [eV]} \]
benzene, a benchmark

\[N = 500 \]
\[N = 1000 \]

US PP’s - \(E_{\text{cut}} = 30 \) Ry
benzene, a benchmark

N=1000
N=2000

US PP's - $E_{\text{cut}}=30$ Ry

Thursday, June 7, 2012
benzene, a benchmark

\[\text{US PP's - } E_{\text{cut}}=30 \text{ Ry} \]
benzene, a benchmark

$\omega \Im \chi(\omega)$

$N=2000$

$N=2300$

real time

US PP's - $E_{\text{cut}}=30$ Ry

Thursday, June 7, 2012
benzene, a benchmark

Im(\omega) = \text{experiment, } N=2300

US PP’s - \text{E}_{\text{cut}}=30 \text{ Ry}

\omega \text{ [eV]}

Thursday, June 7, 2012
speeding up the convergence

US PP's - $E_{cut}=30$ Ry
speeding up the convergence

US PP’s - $E_{\text{cut}}=30$ Ry
speeding up the convergence
speeding up the convergence

\[a_0 \quad b_1 \quad a_1 \quad b_2 \quad a_2 \quad a_{M-1} \quad \bar{a} \quad b_M \quad \bar{b} \]

\[\text{Im} \chi(\omega) \]

\[n=1000 \quad n=2000 \quad n=3000 \quad n=4000 \]

no extrapolation

\[\omega \text{[eV]} \]

Thursday, June 7, 2012
speeding up the convergence

\[a_0 \quad b_1 \quad a_1 \quad b_2 \quad a_2 \quad a_{M-1} \quad \bar{a} \quad b_M \quad \bar{b} \]

\[\text{no extrapolation} \quad \text{extrapolation} \]

\[\text{Im} \chi(\omega) \]

\[\omega [\text{eV}] \]

\[n=1000 \quad n=2000 \quad n=3000 \quad n=4000 \]

\[n=500 \quad n=1000 \quad n=2000 \quad n=4000 \]

Thursday, June 7, 2012
chlorophyll a

$C_{55}H_{72}MgN_4O$
chlorofyll a

\[\lambda \text{ [nm]} \]

\[\alpha \]

tddft

expt
color and function of anthocyanins

cyanidin-3-glucoside
color and function of anthocyanins

cyanidin-3-glucoside

cyanidin-3-glucoside

TDDFT?
color and function of anthocyanins

cyanidin-3-glucoside

TDDFT:-(

absorbance vs wavelength (nm)

benzopyrylium

TDDFT:

catechol

sugar

cyanidin-3-glucoside

TDDFT:

octopus

gaussian
optical effect of the solvent
optical effect of the solvent
optical effect of the solvent

C$_{21}$H$_{21}$O$_{11}$Cl@(H$_2$O)$_{95}$
339 atoms
938 electrons

Thursday, June 7, 2012
optical effect of the solvent
optical effect of the solvent

![Diagram](image1)

![Diagram](image2)

![Diagram](image3)

![Diagram](image4)
optical effect of the solvent
optical effects of intramolecular motion

everything’s fine?
everything’s fine? nay ...

no Coulombic tail in the eh interaction

- no Rydberg states in molecules
- no excitons in extended systems
- wrong charge-transfer excitations
everything’s fine? nay ...

no Coulombic tail in the eh interaction

- no Rydberg states in molecules
- no excitons in extended systems
- wrong charge-transfer excitations

the fix

- exotic frequency-dependent functionals
- non-local (Fock) exchange
 - hybrid functionals
 - BSE equation
no Coulombic tail in the eh interaction

- no Rydberg states in molecules
- no excitons in extended systems
- wrong charge-transfer excitations

the fix

- exotic frequency-dependent functionals
- non-local (Fock) exchange
- hybrid functionals
- BSE equation
everything’s fine? nay ...

no Coulombic tail in the eh interaction

- no Rydberg states in molecules
- no excitons in extended systems
- wrong charge-transfer excitations

the fix

- exotic frequency-dependent functionals
- non-local (Fock) exchange
- hybrid functionals
- BSE equation

THE JOURNAL OF CHEMICAL PHYSICS 133, 164109 (2010)

Ab initio calculations of optical absorption spectra: Solution of the Bethe–Salpeter equation within density matrix perturbation theory

Dario Rocca,1,a) Deyu Lu,1,b) and Giulia Galli1,2

1Department of Chemistry, University of California, Davis, Davis, California 95616, USA
2Department of Physics, University of California, Davis, Davis, California 95616, USA

(Received 28 May 2010; accepted 8 September 2010; published online 27 October 2010)

more on this line to follow ...
Quantum ESPRESSO is an integrated suite of Open-Source computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials.

What I cannot compute, I do not understand (adapted from Richard P. Feynman)
www.quantum-espresso.org

the home of innovation

in electronic-structure theory and simulation
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

Paolo Giannozzi1,2, Stefano Baroni1,3, Nicola Bonini4, Matteo Calandra5, Roberto Car6, Carlo Cavazzoni7,8, Davide Ceresoli4, Guido L Chiarotti9, Matteo Cococcioni10, Ismaila Dabo11, Andrea Dal Corso1,3, Stefano de Gironcoli1,3, Stefano Fabris1,3, Guido Fratesi12, Ralph Gebauer1,13, Uwe Gerstmann14, Christos Gougoussis5, Anton Kokalj1,15, Michele Lazzeri5, Layla Martin-Samos1, Nicola Marzari4, Francesco Mauri5, Riccardo Mazzarello16, Stefano Paolini3,9, Alfredo Pasquarello17,18, Lorenzo Paulatto1,3, Carlo Sbraccia1,19, Sandro Scandolo1,13, Gabriele Sclauzero1,3, Ari P Seitsonen5, Alexander Smogunov13, Paolo Umari1 and Renata M Wentzcovitch10,19
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

Paolo Giannozzi1,2, Stefano Baroni1,3, Nicola Bonini4, Matteo Calandra5, Roberto Car6, Carlo Cavazzoni7,8, Davide Ceresoli4, Guilio L Chiarotti9, Matteo Cococcioni10, Ismaila Dabo11, Andrea Dal Corso1, Stefano de Gironcoli1,3, Stefano Fabris1,3, Guido Fratesi12, Ralph Gebauer13, Uwe Gerstmann14, Christos Gougoussis5, Anton Kokalj1,15, Michele Lazzeri5, Layla Martin-Samos1, Nicola Marzari4, Francesco Mauri5, Riccardo Mazzarello16, Stefano Paolini3,9, Alfredo Pasquarello17,18, Lorenzo Paulatto1,3, Carlo Sbraccia1,†, Sandro Scandolo1,13, Gabriele Sclauzero1,3, Ari P Seitsonen5, Alexander Smogunov13, Paolo Umari1 and Renata M Wentzcovitch10,19
Quantum ESPRESSO: a global community
Quantum ESPRESSO: a global community

Europe 35%
USA 23%
Italy 14%
China 9%
other 20%
other 20%
Quantum ESPRESSO: a global community

Europe: 35%
USA: 23%
Italy: 14%
China: 9%
Other: 20%
Quantum ESPRESSO: a global community

- Europe: 35%
- USA: 23%
- China: 9%
- Italy: 14%
- Russia: 20%
- Latin America: 15%
- Japan: 18%
- Other: 20%
- Asia: 22%
- Middle East: 20%
- Africa: 4%
- Other: 11%

Thursday, June 7, 2012
these slides at
http://talks.baroni.me