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What topology is about



Topology

m Branch of mathematics that describes properties which
remain unchanged under smooth deformations

m Such properties are often labeled by integer numbers:
topological invariants

m Founding concepts: continuity and connectivity, open &
closed sets, neighborhood......

m Differentiability or even a metric not needed



Topology

Branch of mathematics that describes properties which
remain unchanged under smooth deformations

Such properties are often labeled by integer numbers:
topological invariants

Founding concepts: continuity and connectivity, open &
closed sets, neighborhood......

Differentiability or even a metric not needed
(although most welcome to ferret out the meaning of
physical concepts!)

In computational electronic structure, wavefunctions are
not even continuous (in k space)



A coffee cup and a doughnut are the same

g =

a
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This —
o
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Doughnut

Topological invariant: genus (=1 here)



Gaussian curvature: sphere

In a local set of coordinates in the
tangent plane
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Gaussian curvature: sphere

In a local set of coordinates in the
tangent plane

X2 +y?
_Rp_Jm_ 2 _ e XY
z X2 —y T

Gaussian curvature K =detH = %



Positive and negative curvature

8z 8z
_ ox? oxoy
K = det 82z 8%z
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Gauss-Bonnet theorem

Over a smooth closed surface:

1

m Genus g integer: counts the number of “handles”
m Same g for homeomorphic surfaces

(continuous stretching and bending into a new shape)
m Differentiability not needed




Gauss-Bonnet theorem

Over a smooth closed surface:

1/daK:2(1—g)
™Js

m Genus g integer: counts the number of “handles”
m Same g for homeomorphic surfaces

(continuous stretching and bending into a new shape)
[ Differentiability not needed




Debut of topology in electronic structure
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Discovery of quantum Hall effect:
Figure from von Klitzing et al. (1980).

Gate voltage Vy; was supposed to
control the carrier density.

Plateau flat to five decimal figures



Debut of topology in electronic structure

Discovery of quantum Hall effect:
Figure from von Klitzing et al. (1980).

Gate voltage Vy; was supposed to
control the carrier density.

6300

230 235 20 25

— Plateau flat to five decimal figures

Natural resistance unit:
1 klitzing = h/e? = 25812.807557(18) ohm.
This experiment: Ry = Klitzing/4: topological invariant = 4
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Elements of Berryology



Basics

Parametric Hamiltonian, non degenerate ground state

H(&)|y(€)) = E(€)]4(&)) parameter &: “slow variable”

* [¥(&s)) oAy, _ (1(€1)1¥(£2))
[(10(&1)14(€2))
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Basics

Parametric Hamiltonian, non degenerate ground state

H(&)|y(€)) = E(€)]4(&)) parameter &: “slow variable”

) o—ibg,, _ (W(E)IV(E))

() (¥ (&1)1¥(€2))]

’ Ap12 = —Imlog ((&4)[w(€2))
e (D)

v = Apiz2 + Apaz + Apza + Apa
= —1Imlog (¥ (&;)v(&2)) (¥ (€2)11(&3)) (¥ (€)1 (€4)) (¥ (€a)|10(&1))

Gauge-invariant!



Berry connection & Berry curvature

For a differentiable gauge:

m Berry connection A(£) = ((§)|V¢¥(€))

m real, nonconservative vector field
m gauge-dependent
m “geometrical” vector potential

m Berry curvature
Q&) = Vg x A(€) = 1 (Ve (€)] % [Veth(8))
®m gauge-invariant (hence observable)
m geometric analog of a magnetic field



Berry phase

m Loop integral of the Berry connection on a closed path:
1= Ao

m Berry phase, gauge invariant only modulo 27
m corresponds to measurable effects



Berry phase

m Loop integral of the Berry connection on a closed path:
1= Ao

m Berry phase, gauge invariant only modulo 27
m corresponds to measurable effects

m |f C = 0% is the boundary of ¥, then (Stokes th.):

'yzngA(E)d{:/zdaQ(g)-ﬁ

B requires ¥ to be simply connected
m requires A to be regular on ©
m no longer arbitrary mod 27



Berry phase

m Loop integral of the Berry connection on a closed path:
1= Ao

m Berry phase, gauge invariant only modulo 27
m corresponds to measurable effects

m |f C = 0% is the boundary of ¥, then (Stokes th.):

'yzngA(E)d{:/zdaQ(g)-ﬁ

B requires ¥ to be simply connected
m requires A to be regular on ©
m no longer arbitrary mod 27

m What about integrating the curvature on a closed surface?



A simple example: Two level system

HE = ¢-7 nondegenerate for £ # 0
¢ (sin¥cosy oy + sinvsing o, + cosv o)

lowest eigenvalue — ¢

. sin Ye~iv
lowest eigenvector |¢(9,¢)) = )
—CoS 5

Ay = iwlogw) =0
A = il = sint )

1 .
Q = 819./490 - aLpAﬁ - E S|n’l9
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A simple example: Two level system

HE = ¢-7 nondegenerate for £ # 0
¢ (sin¥cosy oy + sinvsing o, + cosv o)

lowest eigenvalue — ¢

. sin Ze—/#
lowest eigenvector [¢(0, ¢)) = 27
—CoS 5

Ay = ilog) =0
A = il = sint )

1 .
Q = 819./490 - aLpAﬁ - E S|n’l9

m Q gauge invariant
m What about .A? Obstruction!



Integrating the Berry curvature

m Gauss-Bonnet-Chern theorem (1940):

1
— Q(&) - n do = topological integer € Z
21 Jge



Integrating the Berry curvature

m Gauss-Bonnet-Chern theorem (1940):
1
21 Je
m Integrating (v, ¢) over [0, 7] x [0, 27]:

Q(&) - n do = topological integer € Z

1 / dvdy 1sin v =1 Chern number C;
2r 2

m Measures the singularity at £ = 0 (monopole)

s

f——



Integrating the Berry curvature

m Gauss-Bonnet-Chern theorem (1940):
1

— Q(&) - n do = topological integer € Z
27T S2

m Integrating (v, ) over [0, 7] x [0, 27]:
1 / dvdy 1sin v =1 Chern number C;
2r 2

m Measures the singularity at £ = 0 (monopole)

m Berry phase on any closed curve C on the sphere:

T: Q
KD = f e ae
e = % x (solid angle spanned)

-



The sphere as the sum of two half spheres

2rCy = | Q&) -ndo
S2

Stokes: Q(¢)-ndo = :tj(I{CAi(E) . d¢

St

Szﬂ(&)-ndazﬁm(o-de—ﬁA_(e)‘ds



The sphere as the sum of two half spheres

2rCy = | Q&) -ndo
S2

Stokes: Q(¢)-ndo = :tj(I{CAi('f) . d¢

St

Szﬂ(&)-ndaz;im(g)-ds—ﬁA_(s)‘ds

Gauge choice: A_(&) regular in the lower hemisphere:
hence it has an obstruction in the upper hemisphere

27Ci = [ Q)-n do——fA_(g) . de
St C



Bloch orbitals (noninteracting electrons in this talk)

m Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

Hivk) = exlvx)

Helu) = exlti) luk) = e ®Ty)  Hg = e *THe*r



Bloch orbitals (noninteracting electrons in this talk)

m Lattice-periodical Hamiltonian (no macroscopic B field);
2d, single band, spinless electrons

Hivk) = exlvx)

Helue) = ekl luk) = e ®Ty)  Hg = e *THe*r
m Berry connection and curvature (£ — k):
A(k) = I'<Uk’VkUk>
Q(k) = i(Vkuk\ X \Vkuk) =-2Im (6kxuk|8kyuk)

m BZ (or reciprocal cell) is a closed surface: 2d torus
Topological invariant:

1
Ci=-— [ dkQ(k) Chern number
o BZ



Computing the Chern number

Discretized reciprocal cell

T —0—0—0—0—0—©
®—0—0—6——6—6—6
*—0—0—0—0—0—&




Computing the Chern number

© o
Discretized reciprocal cell ¢ o000 0 0 o
e 6 o o o o o o
Periodic gauge choice: ¢ o0 000 0 o
where is the obstruction? ¢ o000 0 0 0
® 6 o o o o o o
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Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—@&
®—0—0—6—0—6—6
*—0—0—0—0—0—@&

®o—0—0—0—0—0—6
*—0—0—0—0—0—&

Curvature = Berry phase per unit (reciprocal) area
Berry phase on a small square:

v = —Imlog (U, |Uk,) Uk, | Uks ) {Uks | Uk, ) (Uk, | Uk, )



Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—@&
®o—0—0—0—0—6—6
*—0—0—0—0—0—@&

Curvature = Berry phase per unit (reciprocal) area
Berry phase on a small square:

v = —Imlog (Uk, |Uk,) Uk, |Uks) ( Uks | Uk, ) { Uk, | Uk, )

Which branch of Im log?



Computing the Chern number

Discretized reciprocal cell

*—0—0—0—0—0—&
®o—0—0—6——6—0—6
*—0—0—0—0—0—&

NonAbelian (many-band):
v = —Imlog det S(ki, k2)S(kz, k3)S(ks, ks)S(ka, K1)

Snr (Ks, Ks') = <Unks‘Unks,>
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Chern insulators



Hexagonal boron nitride (& graphene)

Topologically trivial: Cy = 0.
Why?




nitride (& graphene)

Hexagonal boron

Topologically trivial: Cy = 0.
Why?
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T
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Symmetry properties
m Time-reversal symmetry — Q(k) = —Q(—k)

m Inversion symmetry — Q(k) = Q(—Kk)

m Need to break time-reversal invariance!
m B field in the quantum Hall effect (TKNN invariant)

m What about graphene?



The “Haldanium” paradigm (F.D.M. Haldane, 1988)

+ staggered B field




The “Haldanium” paradigm (F.D.M. Haldane, 1988)

staggered B field

3.67

Tight-binding parameters: 28\
m 1st-neighbor hopping t 4
m staggered onsite +A i 35 : :
m complex 2nd-neighbor te'®

Cc=0

0
@ [in units of ]

Phase diagram



Topological order

0 0.5
@ [in units of ]

m Ground state wavefunctions differently “knotted” in k space
m Topological order very robust

m C; switched only via a metallic state: “cutting the knot”

m Displays quantum Hall effect at B=0
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Wannier functions do not exist when C; # 0

(Thouless, 1984)

m Proof by absurd. If WFs exist then
[vk) =Y eFIR)
R
m This implies

lYkig) = [Yk) (so called “periodic gauge”)



Wannier functions do not exist when C; # 0

(Thouless, 1984)

m Proof by absurd. If WFs exist then
[vk) =Y eFIR)
R
m This implies

lYkig) = [Yk) (so called “periodic gauge”)

m When C; # 0 a periodic gauge in the whole BZ does not
exist: topological obstruction



Simulation by T. Thonhauser & D. Vanderbilt, 2006
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FIG. 8. Gauge-independent part {}; and gauge-dependent part Q
of the spread functional for the Haldane model as a function of the
k-mesh density.



Chern insulators

m Besides Haldanium (a very popular computational
material), do Chern insulators exist in nature?

m Discovery announced at the 2012 APS March Meeting, not
confirmed by any preprint yet (to my knowledge)

m Also called QAHE (quantum anomalous Hall effect). Why?

m Nonexotic ferromagnetic metals in 3d (Ni, Co, Fe) show
AHE: Hall effect in zero B field.
Nonquantized: Berry curvature integrated within the
Fermi volume.



Time-reversal symmetric topological insulators

m In2d:
m Kane-Mele model Hamiltonian, 2005
m A novel invariant, two-valued (Z,)
m Zero order picture: two copies of the Haldane model
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(L. Molenkamp & al.)



Time-reversal symmetric topological insulators

m In 2d:

m Kane-Mele model Hamiltonian, 2005
m A novel invariant, two-valued (Z,)
m Zero order picture: two copies of the Haldane model
m Discovered: Hg,Cd_,Te quantum wells, 2007
(L. Molenkamp & al.)

m In 3d:

m Predicted by Fu, Kane, and Mele in 2007
m Discovered: Bi,Sbq_y, 2008 (M.Z. Hasan & al.)



2012 O. E. Buckley Condensed Matter Physics Prize

m “For the theoretical prediction and experimental
observation of the quantum spin Hall effect, opening the
field of topological insulators”

m Charles L. Kane (U. Pennsylvania)
Laurens W. Molenkamp (U. Wurzburg, Germany)
Shoucheng Zhang (Stanford U.)
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Noncrystalline insulators



Computing the Chern number

T —0—0—0—0—0—©
®—0—0—6——6—6—6
*—0—0—0—0—0—&




Computing the Chern number

Cell doubling:

m Reciprocal cell reduced fourfold
m # of states increased fourfold

m the states are the same

m C; invariant

*—0 0 000§
®—0—0—6——6—6—6
*—0—0—0—0—0—&

® © © 0—0—0—6
0 0 0—0—0—©&




Computing the Chern number

Cell doubling:

m Reciprocal cell reduced fourfold
m # of states increased fourfold

m the states are the same

m C; invariant

—0—0—0—0—0—&
®—0—0—6—0—6—6
*—0—0—0—0—0—&

Down to the very minimum:
m One state on many loops — Many states on a single loop

m The gauge is now periodical throughout:
Where is the obstruction?

m Eventually, C; is a k = 0 property!



Interpretation of the single point formula

m In the large supercell limit

2
Ci=— [ dkow - ;T(Z:) Q(0)

- 27T BZ
Chern number —  curvature per unit sample area:
no integration




Interpretation of the single point formula

m In the large supercell limit

1 1 (27)?
= — k Q(k —
C1 271' BZ d ( ) - 27T AC
Chern number —  curvature per unit sample area:

no integration

Q(0)

m Q(0) is a linear response of the ground state to an
infinitesimal “twist” or “flux” in the many-body Hamiltonian:

Fi(k) = Z pi + A(r,) + hk[2+

2me

N
Q(0) = 1> ((Ok, Uno| Ok, Uno) — (Dk, Uno|Ok, Uno) )

n=1



Convergence with supercell size

(D. Ceresoli & R.R. 2007)

Chern number as a function of the
supercell size, evaluated using the
single-point formulas for the Haldane
model Hamiltonian. The largest L cor-
responds to 2048 sites in the super-
cell.

Chern number

1.02

1.00

0.98

0.96 |

0.94

0.92

numerical —e—
analytical —e—
exact

0

L I I
0.05 01 015 02
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Manifesto: k space vs. r space

m |s topological order purely a k space business?

m Can | detect topological order in a finite sample
(“open boundary conditions”)?

m Can | detect topological order in a macroscopically
inhomogeneous sample?



Manifesto: k space vs. r space

m |s topological order purely a k space business?

m Can | detect topological order in a finite sample
(“open boundary conditions”)?

m Can | detect topological order in a macroscopically
inhomogeneous sample?

m The one-body density matrix (ground state projector):
m determines the ground state (independent electrons)
m embeds the information about topological order
m is “shortsighted” ( © by W. Kohn)
m hence.......
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Chern number as a cumulant moment in r space



Shortsightedness (noninteracting spinless electrons)

P(r,r)  ground-state projector

m P(r,r') uniquely determines the ground state

m If we look at P(r,r') in the bulk of a sample the boundary
conditions (either open or periodic) become irrelevant

m Asymptotic behavior of |P(r, )| for [r — ¥'| — oo:

m Power law in metals
m Exponential in insulators
m Gaussian in the IQHE



Insulating vs. metallic ground state

The “localization tensor”, a.k.a. second cumulant moment of the electron distribution

m Definition within OBCs:
(Fars)e 2N/drdr (r—r)o(r—r)g|P(r,r)

m Always well defined (r operator harmless within OBCs)
m Intensive (size-consistent)

m Real symmetric

m Original theory for correlated wavefunctions
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m Always well defined (r operator harmless within OBCs)
m Intensive (size-consistent)

m Real symmetric

m Original theory for correlated wavefunctions

m Identical transformation:

, 1
Q(r,r') = 6(r—r)—P(r,r) (Falg)e = NTra”Space{raPrgQ}
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Insulating vs. metallic ground state

The “localization tensor”, a.k.a. second cumulant moment of the electron distribution

m Definition within OBCs:
(Fars)e 2N/drdr (r—r)o(r—r)g|P(r,r)

m Always well defined (r operator harmless within OBCs)
m Intensive (size-consistent)

m Real symmetric

m Original theory for correlated wavefunctions

m |dentical transformation:
1
Q(r,r') = 6(r—r)—P(r,r) (Falg)e = NTra”Space{raPrgQ}

m What about the thermodynamic limit?

m ) (rfafa). diverges in metals
m ) (rafa)c converges in all insulators:
quantum Hall, band, Chern, Z,, Anderson...... (so far)



Brillouin-zone integral

Switching to a crystalline solid (PBCs):

1 1
(rarﬁ’)c = NTrallspace{raPrﬂQ} - ﬁTrcell{raPr,BQ}

r operator harmless when sandwiched between P and Q



Brillouin-zone integral

Switching to a crystalline solid (PBCs):

1

1
<ro¢rﬁ>c = NTra||Space{raPrﬂQ} — m

r operator harmless when sandwiched between P and Q

In terms of Bloch states e "u, (in 2d):

(falg)e = 27r 2N /dk< 8kaUnk‘akﬁUnk>

= (Unk| Ok, Urrk) (ks Unri Unk>>

n,n’



Marzari-Vanderbilt

2:<roéra)C = %QI MV gauge-invariant quadratic spread
C
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Marzari-Vanderbilt

z:<roéra)C = %QI MV gauge-invariant quadratic spread
C

«

Naturally endowed with an off-diagonal imaginary part:

A
Im (I’1 r2>c = (27T)ZN Im /dk E :<6k1 Un'<|ak2unk>
¢ n




Marzari-Vanderbilt

z:<roéra)C = %QI MV gauge-invariant quadratic spread
C

«

Naturally endowed with an off-diagonal imaginary part:

A
Im (I’1 r2>c = (27T)ZN Im /dk E :<6k1 Un'<|ak2unk>
¢ n

Chern number:

1
¢ = —im | k> (O kO k)



Metric-curvature tensor (2d, 1 band)

Fap(K) = (O, Uk| Ok, ) — Ok, Uk| Uk) { Uk | Ok Uk)

Re Fo5(k) = gas(K) quantum metric

Im Fop(k) = —%Q(k) Berry curvature



Metric-curvature tensor (2d, 1 band)

Q

Cy

Fap(K) = (O, Uk| Ok, ) — Ok, Uk| Uk) { Uk | Ok Uk)

Re Fo5(k) = gas(K) quantum metric

Im Fop(k) = —%Q(k) Berry curvature

(2 / dk [ gx (k) + gyy(k)] gauge-invariant spread
7('

1

- dk Q(k) Chern number
27T BZ



Metric-curvature tensor (2d, 1 band)

Fap(K) = (O, Uk| Ok, ) — Ok, Uk| Uk) { Uk | Ok Uk)

Re Fo5(k) = gas(K) quantum metric
1

Im Fop(k) = —éﬂ(k) Berry curvature

Q = (2 / dk [ g« (k) + gyy(K)] gauge-invariant spread
7(

Ci = X dk Q(k) Chern number
27T BZ

Whenever Q is finite, Cy is quantized



Q finite, but WFs do not exist

(Simulation by Thonhauser & Vanderbilt, 2006)

0.25[ ‘ -
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G 0751 =
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FIG. 8. Gauge-independent part {}; and gauge-dependent part Q
of the spread functional for the Haldane model as a function of the
k-mesh density.



Chern number in terms of the density matrix

Am

Ci = —4n—=Im (rn). = A

Im Tl’ce”{ﬁ Per}

m Proof for a lattice model: Kitaev 2006, Prodan 2009
(Thanks to D. Vanderbilt)

m General proof implicit in Sgiarovello et al. 2001
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(true even for correlated wavefunctions, e.g. FQHE)



Chern number in terms of the density matrix

Am

Ci = —4n—=Im (rn). = A

Im Treen{r1 PraQ}

m Proof for a lattice model: Kitaev 2006, Prodan 2009
(Thanks to D. Vanderbilt)

m General proof implicit in Sgiarovello et al. 2001

m Imaginary part quantized whenever real part is finite
(true even for correlated wavefunctions, e.g. FQHE)

m | started with a real symmetric tensor (r,rz).:
Where did the imaginary part sneak?



From OBCs to PBCs

The apparently innocent ansatz:

1 1
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m P projects on a finite-dimensional manifold
m PBCs:

m (r,rg). complex Hermitian Cartesian tensor
m P projects on an infinite-dimensional manifold



From OBCs to PBCs

The apparently innocent ansatz:

1 1
(rarﬁ>c = NTrallspace{raPrﬁQ} — ﬁTrcell{raPr[BQ}

m OBCs:

B (r,r3). real symmetric Cartesian tensor
m P projects on a finite-dimensional manifold

m PBCs:

m (r,rg). complex Hermitian Cartesian tensor
m P projects on an infinite-dimensional manifold

m Sandwiching between P and Q not needed
for the imaginary antisymmetric part:

Im (rir2)c = Im Tr{ri ProQ} = —Im Tr{r; Pra P}



Numerical simulations

m Within OBCs:

1
Im Tr{ry PraP} = ETr{ [PriP,PrP]} =0

What happens?



Numerical simulations

m Within OBCs:

Im Tr{r1 PP} = %Tr{ [PriP,Pr,P]} =0

What happens?

m Answer: computer simulations on Haldanium, once more

PHYSICAL REVIEW B 84, 241106(R) (2011)

Mapping topological order in coordinate space

Raffaello Bianco and Raffaele Resta



Chern number as a local quantity

Im Tr{r PP} = %Tr{ [PriP, Pr2P] }

Cy = ~ 2 Trean{ [P P. ProP) } = ~2mi ;- [ it (] [P P. ProP] )
AC Ac cell



Chern number as a local quantity

Im Tr{r PP} = %Tr{ [PriP, Pr2P] }

Ci = 2 Mool [Pr P, PrP]} = ~2xi 4 [ o (1 (PP, ProP] I
A A cell

Ci macroscopic average of (r)
&(r) = =27i{r| [Pry P, PraP] |r) “topological marker”

Can also be interpreted as the curvature per unit area!



Chern number as a local quantity

Im Tr{r PP} = %Tr{ [PriP, Pr2P] }

Ci = 2 Mool [Pr P, PrP]} = ~2xi 4 [ o (1 (PP, ProP] I
A A cell

Ci macroscopic average of (r)
&(r) = =27i{r| [Pry P, PraP] |r) “topological marker”

Can also be interpreted as the curvature per unit area!

Last but not least: Boundary conditions irrelevant



Haldanium flake (OBCs)

Sample of 2550 sites, line with 50 sites



Crystalline Haldanium (normal & Chern)
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Haldanium alloy (normal & Chern)
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Haldanium heterojunctions

1 e 7] |
0 [ \] 5] @ (©)
3
_1 L
ot W 1 - \
3f () © al \
4t
_5. : ]
0.8 108
0.6 106
0.4 104 {.
50
0.2 102 :
20 10 0 10 20 20 -0 0 10 20

05 0 0.5
¢ [in units of ]

Topological marker (top); site occupancy (bottom)



Outline

A Conclusions



Conclusions and perspectives

m Topological invariants and topological order
Wave function “knotted” in k space

m Topological invariants are measurable integers
Very robust (“topologically protected”)
Most spectacular: quantum Hall effect

m Topological order without a B field: topological insulators

m Topological order is (also) a local property of the
ground-state wave function: Our simulations

m What about other kinds of topological order (e.g. Z5)?
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