# **Topological Order in Electronic Wavefunctions**

#### Raffaele Resta

Dipartimento di Fisica Teorica, Università di Trieste, and DEMOCRITOS National Simulation Center, IOM-CNR, Trieste

ES12, Wake Forest University, June 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Outline

- 1 What topology is about
- 2 Elements of Berryology
- 3 Chern insulators
- 4 Noncrystalline insulators
- 5 Chern number as a cumulant moment in **r** space

▲□▶▲□▶▲□▶▲□▶ □ のQ@

#### 6 Conclusions

## Outline

#### 1 What topology is about

- 2 Elements of Berryology
- 3 Chern insulators
- 4 Noncrystalline insulators
- 5 Chern number as a cumulant moment in **r** space

#### 6 Conclusions

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

# Topology

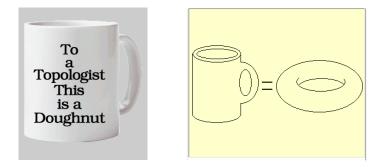
- Branch of mathematics that describes properties which remain unchanged under smooth deformations
- Such properties are often labeled by integer numbers: topological invariants
- Founding concepts: continuity and connectivity, open & closed sets, neighborhood.....
- Differentiability or even a metric not needed (although most welcome to ferret out the meaning of physical concepts!)
- In computational electronic structure, wavefunctions are not even continuous (in k space)

・ロト・日本・日本・日本・日本

# Topology

- Branch of mathematics that describes properties which remain unchanged under smooth deformations
- Such properties are often labeled by integer numbers: topological invariants
- Founding concepts: continuity and connectivity, open & closed sets, neighborhood.....
- Differentiability or even a metric not needed (although most welcome to ferret out the meaning of physical concepts!)
- In computational electronic structure, wavefunctions are not even continuous (in k space)

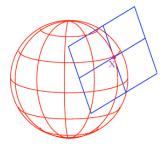
# A coffee cup and a doughnut are the same



#### Topological invariant: genus (=1 here)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### Gaussian curvature: sphere



In a local set of coordinates in the tangent plane

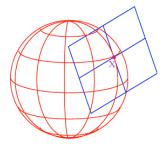
$$z = R - \sqrt{R^2 - x^2 - y^2} \simeq rac{x^2 + y^2}{2R}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Hessian 
$$H = \begin{pmatrix} 1/R & 0 \\ 0 & 1/R \end{pmatrix}$$

Gaussian curvature  $K = \det H = \frac{1}{B^2}$ 

### Gaussian curvature: sphere



In a local set of coordinates in the tangent plane

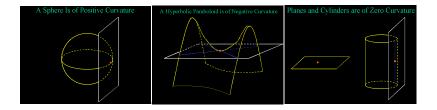
$$z = R - \sqrt{R^2 - x^2 - y^2} \simeq rac{x^2 + y^2}{2R}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Hessian 
$$H = \begin{pmatrix} 1/R & 0 \\ 0 & 1/R \end{pmatrix}$$

Gaussian curvature  $K = \det H = \frac{1}{R^2}$ 

## Positive and negative curvature



Smooth surface, local set of coordinates on the tangent plane

$$\mathcal{K} = \det \left( \begin{array}{cc} \frac{\partial^2 z}{\partial x^2} & \frac{\partial^2 z}{\partial x \partial y} \\ \frac{\partial^2 z}{\partial y \partial x} & \frac{\partial^2 z}{\partial y^2} \end{array} \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

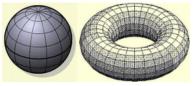
Over a smooth closed surface:

$$\frac{1}{2\pi}\int_{\mathcal{S}}d\sigma\;K=2(1-g)$$

- Genus g integer: counts the number of "handles"
- Same g for homeomorphic surfaces (continuous stretching and bending into a new shape)

(日) (日) (日) (日) (日) (日) (日)

Differentiability not needed



g=0 g=1

Over a smooth closed surface:

$$\frac{1}{2\pi}\int_{\mathcal{S}}d\sigma\;K=2(1-g)$$

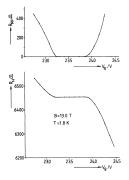
- Genus g integer: counts the number of "handles"
- Same g for homeomorphic surfaces (continuous stretching and bending into a new shape)
- Differentiability not needed



g=0 g=1 g=1 g=2

(ロ) (同) (三) (三) (三) (三) (○) (○)

# Debut of topology in electronic structure



Discovery of quantum Hall effect: Figure from von Klitzing et al. (1980).

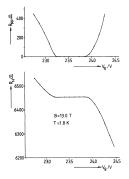
Gate voltage  $V_g$  was supposed to control the carrier density.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Plateau flat to five decimal figures

Natural resistance unit: 1 klitzing =  $h/e^2$  = 25812.807557(18) ohm. This experiment:  $R_{\rm H}$  = klitzing/4: topological invariant = 4

# Debut of topology in electronic structure



Discovery of quantum Hall effect: Figure from von Klitzing et al. (1980).

Gate voltage  $V_g$  was supposed to control the carrier density.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Plateau flat to five decimal figures

Natural resistance unit: 1 klitzing =  $h/e^2$  = 25812.807557(18) ohm. This experiment:  $R_{\rm H}$  = klitzing/4: topological invariant = 4

## Outline

#### 1 What topology is about

- 2 Elements of Berryology
- 3 Chern insulators
- 4 Noncrystalline insulators
- 5 Chern number as a cumulant moment in **r** space

#### 6 Conclusions

・ロト・日本・日本・日本・日本・日本

#### **Basics**

Parametric Hamiltonian, non degenerate ground state

 $H(\xi)|\psi(\xi)\rangle = E(\xi)|\psi(\xi)\rangle$  parameter  $\xi$ : "slow variable"

$$\begin{array}{c} \cdot |\psi(\boldsymbol{\xi}_{3})\rangle \\ \bullet |\psi(\boldsymbol{\xi}_{2})\rangle \\ \bullet |\psi(\boldsymbol{\xi}_{1})\rangle \end{array} e^{-i\Delta\varphi_{12}} = \frac{\langle \psi(\boldsymbol{\xi}_{1})|\psi(\boldsymbol{\xi}_{2})\rangle}{|\langle \psi(\boldsymbol{\xi}_{1})|\psi(\boldsymbol{\xi}_{2})\rangle|} \\ \Delta\varphi_{12} = -\operatorname{Im}\log\langle \psi(\boldsymbol{\xi}_{1})|\psi(\boldsymbol{\xi}_{2})\rangle \end{array}$$

 $\gamma = \Delta \varphi_{12} + \Delta \varphi_{23} + \Delta \varphi_{34} + \Delta \varphi_{41}$ = - Im log  $\langle \psi(\xi_1) | \psi(\xi_2) \rangle \langle \psi(\xi_2) | \psi(\xi_3) \rangle \langle \psi(\xi_3) | \psi(\xi_4) \rangle \langle \psi(\xi_4) | \psi(\xi_1) \rangle$ Gauge-invariant!

#### **Basics**

Parametric Hamiltonian, non degenerate ground state

 $H(\xi)|\psi(\xi)\rangle = E(\xi)|\psi(\xi)\rangle$  parameter  $\xi$ : "slow variable"

$$e^{-i\Delta\varphi_{12}} = \frac{\langle\psi(\boldsymbol{\xi}_1)|\psi(\boldsymbol{\xi}_2)\rangle}{|\langle\psi(\boldsymbol{\xi}_1)|\psi(\boldsymbol{\xi}_2)\rangle|}$$
$$\Delta\varphi_{12} = -\operatorname{Im}\log\langle\psi(\boldsymbol{\xi}_1)|\psi(\boldsymbol{\xi}_2)\rangle$$

For a differentiable gauge:

Berry connection  $\mathcal{A}(\xi) = i \langle \psi(\xi) | \nabla_{\xi} \psi(\xi) \rangle$ 

- real, nonconservative vector field
- gauge-dependent
- "geometrical" vector potential

Berry curvature  

$$\Omega(\xi) = \nabla_{\xi} \times \mathcal{A}(\xi) = i \langle \nabla_{\xi} \psi(\xi) | \times | \nabla_{\xi} \psi(\xi) \rangle$$
  
gauge-invariant (hence observable)

geometric analog of a magnetic field

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Berry phase

Loop integral of the Berry connection on a closed path:

$$m{\gamma}=\oint_{C}m{\mathcal{A}}(m{\xi})\cdot dm{\xi}$$

Berry phase, gauge invariant only modulo 2π
 corresponds to measurable effects

If  $C = \partial \Sigma$  is the boundary of  $\Sigma$ , then (Stokes th.):

$$\gamma = \oint_{\partial \Sigma} \mathcal{A}(\xi) \cdot d\xi = \int_{\Sigma} d\sigma \ \Omega(\xi) \cdot \hat{\mathsf{n}}$$

requires Σ to be simply connected

• requires  $\mathcal{A}$  to be regular on  $\Sigma$ 

• no longer arbitrary mod  $2\pi$ 

■ What about integrating the curvature on a **closed** surface?

### Berry phase

Loop integral of the Berry connection on a closed path:

$$m{\gamma}=\oint_{C}m{\mathcal{A}}(m{\xi})\cdot dm{\xi}$$

Berry phase, gauge invariant only modulo 2π
 corresponds to measurable effects

If  $C = \partial \Sigma$  is the boundary of  $\Sigma$ , then (Stokes th.):

$$\gamma = \oint_{\partial \Sigma} \mathcal{A}(\xi) \cdot d\xi = \int_{\Sigma} d\sigma \ \Omega(\xi) \cdot \hat{\mathbf{n}}$$

- requires Σ to be simply connected
- requires  $\mathcal{A}$  to be regular on  $\Sigma$
- no longer arbitrary mod  $2\pi$

What about integrating the curvature on a closed surface?

### Berry phase

Loop integral of the Berry connection on a closed path:

$$m{\gamma}=\oint_{C}m{\mathcal{A}}(m{\xi})\cdot dm{\xi}$$

Berry phase, gauge invariant only modulo 2π
 corresponds to measurable effects

If  $C = \partial \Sigma$  is the boundary of  $\Sigma$ , then (Stokes th.):

$$\gamma = \oint_{\partial \Sigma} \mathcal{A}(\xi) \cdot d\xi = \int_{\Sigma} d\sigma \ \Omega(\xi) \cdot \hat{\mathbf{n}}$$

- requires Σ to be simply connected
- requires  $\mathcal{A}$  to be regular on  $\Sigma$
- no longer arbitrary mod  $2\pi$

What about integrating the curvature on a closed surface?

### A simple example: Two level system

 $H(\xi) = \xi \cdot \vec{\sigma}$  nondegenerate for  $\xi \neq 0$ 

 $= \xi (\sin \vartheta \cos \varphi \, \sigma_{\mathbf{x}} + \sin \vartheta \sin \varphi \, \sigma_{\mathbf{y}} + \cos \vartheta \, \sigma_{\mathbf{z}})$ 

lowest eigenvalue  $-\xi$ lowest eigenvector  $|\psi(\vartheta,\varphi)\rangle = \begin{pmatrix} \sin\frac{\vartheta}{2}e^{-i\varphi} \\ -\cos\frac{\vartheta}{2} \end{pmatrix}$ 

$$\begin{aligned} \mathcal{A}_{\vartheta} &= i\langle\psi|\partial_{\vartheta}\psi\rangle = 0\\ \mathcal{A}_{\varphi} &= i\langle\psi|\partial_{\varphi}\psi\rangle = \sin^{2}\frac{\vartheta}{2}\\ \mathbf{\Omega} &= \partial_{\vartheta}\mathcal{A}_{\varphi} - \partial_{\varphi}\mathcal{A}_{\vartheta} = \frac{1}{2}\sin\vartheta \end{aligned}$$

 $\square$   $\Omega$  gauge invariant

What about A? Obstruction!

### A simple example: Two level system

 $H(\xi) = \xi \cdot \vec{\sigma}$  nondegenerate for  $\xi \neq 0$ 

 $= \xi (\sin \vartheta \cos \varphi \, \sigma_{\mathbf{X}} + \sin \vartheta \sin \varphi \, \sigma_{\mathbf{Y}} + \cos \vartheta \, \sigma_{\mathbf{Z}})$ 

 $\begin{array}{ll} \text{lowest eigenvalue} & -\xi \\ \text{lowest eigenvector} & |\psi(\vartheta,\varphi)\rangle = \left( \begin{array}{c} \sin\frac{\vartheta}{2} \mathrm{e}^{-i\varphi} \\ -\cos\frac{\vartheta}{2} \end{array} \right) \end{array}$ 

$$\begin{array}{rcl} \mathcal{A}_{\vartheta} &=& i\langle\psi|\partial_{\vartheta}\psi\rangle = \mathbf{0} \\ \mathcal{A}_{\varphi} &=& i\langle\psi|\partial_{\varphi}\psi\rangle = \sin^{2}\frac{\vartheta}{2} \\ \mathbf{\Omega} &=& \partial_{\vartheta}\mathcal{A}_{\varphi} - \partial_{\varphi}\mathcal{A}_{\vartheta} = \frac{1}{2}\sin\vartheta \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

- Ω gauge invariant
- What about A? Obstruction!

### A simple example: Two level system

$$H(\xi) = \xi \cdot \vec{\sigma}$$
 nondegenerate for  $\xi \neq 0$ 

 $= \xi (\sin \vartheta \cos \varphi \, \sigma_{\mathbf{X}} + \sin \vartheta \sin \varphi \, \sigma_{\mathbf{Y}} + \cos \vartheta \, \sigma_{\mathbf{Z}})$ 

$$\begin{array}{ll} \text{lowest eigenvalue} & -\xi \\ \text{lowest eigenvector} & |\psi(\vartheta,\varphi)\rangle = \left( \begin{array}{c} \sin\frac{\vartheta}{2}e^{-i\varphi} \\ -\cos\frac{\vartheta}{2} \end{array} \right) \end{array}$$

$$\begin{aligned} \mathcal{A}_{\vartheta} &= i\langle\psi|\partial_{\vartheta}\psi\rangle = 0\\ \mathcal{A}_{\varphi} &= i\langle\psi|\partial_{\varphi}\psi\rangle = \sin^{2}\frac{\vartheta}{2}\\ \mathbf{\Omega} &= \partial_{\vartheta}\mathcal{A}_{\varphi} - \partial_{\varphi}\mathcal{A}_{\vartheta} = \frac{1}{2}\sin\vartheta \end{aligned}$$

- Ω gauge invariant
- What about *A*? **Obstruction!**

# Integrating the Berry curvature

Gauss-Bonnet-Chern theorem (1940):

$$rac{1}{2\pi}\int_{S^2} \mathbf{\Omega}(m{\xi}) \cdot \mathbf{n} \; d\sigma = ext{topological integer} \in \mathbb{Z}$$

Integrating  $\Omega(\vartheta, \varphi)$  over  $[0, \pi] \times [0, 2\pi]$ :

$$rac{1}{2\pi}\int dartheta darphi \, rac{1}{2}\sinartheta = 1$$
 Chern number  $C_1$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Measures the singularity at  $\xi = 0$  (monopole)

Berry phase on any closed curve *C* on the sphere:

# Integrating the Berry curvature

Gauss-Bonnet-Chern theorem (1940):

 $\frac{1}{2\pi}\int_{\mathcal{S}^2} \mathbf{\Omega}(\boldsymbol{\xi}) \cdot \mathbf{n} \ d\sigma = \text{topological integer} \in \mathbb{Z}$ 

Integrating  $\Omega(\vartheta, \varphi)$  over  $[0, \pi] \times [0, 2\pi]$ :

 $\frac{1}{2\pi}\int d\vartheta d\varphi \,\frac{1}{2}\sin\vartheta = 1 \qquad \text{Chern number } C_1$ 

• Measures the singularity at  $\xi = 0$  (monopole)

Berry phase on any closed curve *C* on the sphere:

$$\gamma \equiv \oint_C \mathcal{A}(\xi) \cdot d\xi$$
$$= \frac{1}{2} \times \text{(solid angle spanned)}$$

# Integrating the Berry curvature

Gauss-Bonnet-Chern theorem (1940):

 $\frac{1}{2\pi}\int_{\mathcal{S}^2} \mathbf{\Omega}(\boldsymbol{\xi}) \cdot \mathbf{n} \ d\sigma = \text{topological integer} \in \mathbb{Z}$ 

Integrating  $\Omega(\vartheta, \varphi)$  over  $[0, \pi] \times [0, 2\pi]$ :

 $\frac{1}{2\pi}\int d\vartheta d\varphi \,\frac{1}{2}\sin\vartheta = 1 \qquad \text{Chern number } C_1$ 

• Measures the singularity at  $\xi = 0$  (monopole)

Berry phase on any closed curve *C* on the sphere:

$$\gamma \equiv \oint_C \mathcal{A}(\xi) \cdot d\xi$$
$$= \frac{1}{2} \times \text{(solid angle spanned)}$$

### The sphere as the sum of two half spheres

$$2\pi C_1 = \int_{S^2} \Omega(\xi) \cdot \mathbf{n} \, d\sigma$$
$$= \int_{S_+} \Omega(\xi) \cdot \mathbf{n} \, d\sigma + \int_{S_-} \Omega(\xi) \cdot \mathbf{n} \, d\sigma$$

r

Stokes: 
$$\int_{S_{\pm}} \Omega(\xi) \cdot \mathbf{n} \, d\sigma = \pm \oint_{C} \mathcal{A}_{\pm}(\xi) \cdot d\xi$$
$$\int_{S^{2}} \Omega(\xi) \cdot \mathbf{n} \, d\sigma = \oint_{C} \mathcal{A}_{+}(\xi) \cdot d\xi - \oint_{C} \mathcal{A}_{-}(\xi) \cdot d\xi$$

Gauge choice:  $\mathcal{A}_{-}(\xi)$  regular in the lower hemisphere: hence it has an **obstruction** in the upper hemisphere

$$2\pi C_1 = \int_{S_+} \mathbf{\Omega}(\boldsymbol{\xi}) \cdot \mathbf{n} \, d\sigma - \oint_C \mathcal{A}_-(\boldsymbol{\xi}) \cdot d\boldsymbol{\xi}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

### The sphere as the sum of two half spheres

$$2\pi C_1 = \int_{S^2} \Omega(\xi) \cdot \mathbf{n} \, d\sigma$$
$$= \int_{S_+} \Omega(\xi) \cdot \mathbf{n} \, d\sigma + \int_{S_-} \Omega(\xi) \cdot \mathbf{n} \, d\sigma$$

r

Stokes: 
$$\int_{S_{\pm}} \Omega(\xi) \cdot \mathbf{n} \, d\sigma = \pm \oint_{C} \mathcal{A}_{\pm}(\xi) \cdot d\xi$$
$$\int_{S^{2}} \Omega(\xi) \cdot \mathbf{n} \, d\sigma = \oint_{C} \mathcal{A}_{+}(\xi) \cdot d\xi - \oint_{C} \mathcal{A}_{-}(\xi) \cdot d\xi$$

Gauge choice:  $\mathcal{A}_{-}(\xi)$  regular in the lower hemisphere: hence it has an **obstruction** in the upper hemisphere

$$2\pi C_1 = \int_{S_+} \Omega(\xi) \cdot \mathbf{n} \, d\sigma - \oint_C \mathcal{A}_-(\xi) \cdot d\xi$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

# Bloch orbitals (noninteracting electrons in this talk)

Lattice-periodical Hamiltonian (no macroscopic B field);
 2d, single band, spinless electrons

 $\begin{array}{lll} H|\psi_{\mathbf{k}}\rangle &=& \varepsilon_{\mathbf{k}}|\psi_{\mathbf{k}}\rangle \\ H_{\mathbf{k}}|u_{\mathbf{k}}\rangle &=& \varepsilon_{\mathbf{k}}|u_{\mathbf{k}}\rangle & \qquad |u_{\mathbf{k}}\rangle = \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{r}}|\psi_{\mathbf{k}}\rangle & H_{\mathbf{k}} = \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{r}}H\mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}} \end{array}$ 

**Berry connection and curvature**  $(\boldsymbol{\xi} \rightarrow \boldsymbol{k})$ :

$$\begin{aligned} \mathcal{A}(\mathbf{k}) &= i \langle u_{\mathbf{k}} | \nabla_{\mathbf{k}} u_{\mathbf{k}} \rangle \\ \mathbf{\Omega}(\mathbf{k}) &= i \langle \nabla_{\mathbf{k}} u_{\mathbf{k}} | \times | \nabla_{\mathbf{k}} u_{\mathbf{k}} \rangle = -2 \operatorname{Im} \langle \partial_{k_{x}} u_{\mathbf{k}} | \partial_{k_{y}} u_{\mathbf{k}} \rangle \end{aligned}$$

BZ (or reciprocal cell) is a closed surface: 2d torus Topological invariant:

$$C_1 = rac{1}{2\pi} \int_{\mathrm{BZ}} d\mathbf{k} \, \mathbf{\Omega}(\mathbf{k})$$
 Chern number

# Bloch orbitals (noninteracting electrons in this talk)

Lattice-periodical Hamiltonian (no macroscopic B field);
 2d, single band, spinless electrons

 $\begin{array}{lll} H|\psi_{\mathbf{k}}\rangle &=& \varepsilon_{\mathbf{k}}|\psi_{\mathbf{k}}\rangle \\ H_{\mathbf{k}}|u_{\mathbf{k}}\rangle &=& \varepsilon_{\mathbf{k}}|u_{\mathbf{k}}\rangle & \qquad |u_{\mathbf{k}}\rangle = \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{r}}|\psi_{\mathbf{k}}\rangle & H_{\mathbf{k}} = \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{r}}H\mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}} \end{array}$ 

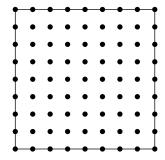
**Berry connection and curvature**  $(\boldsymbol{\xi} \rightarrow \boldsymbol{k})$ :

$$\begin{array}{lcl} \mathcal{A}(\mathbf{k}) &=& i \langle u_{\mathbf{k}} | \nabla_{\mathbf{k}} u_{\mathbf{k}} \rangle \\ \mathbf{\Omega}(\mathbf{k}) &=& i \langle \nabla_{\mathbf{k}} u_{\mathbf{k}} | \times | \nabla_{\mathbf{k}} u_{\mathbf{k}} \rangle = -2 \operatorname{Im} \langle \partial_{k_{x}} u_{\mathbf{k}} | \partial_{k_{y}} u_{\mathbf{k}} \rangle \end{array}$$

BZ (or reciprocal cell) is a closed surface: 2d torus Topological invariant:

$$C_1 = rac{1}{2\pi} \int_{\mathrm{BZ}} d\mathbf{k} \ \mathbf{\Omega}(\mathbf{k})$$
 Chern number

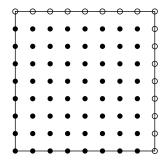
#### Discretized reciprocal cell



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

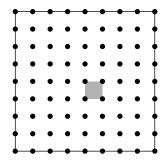
Discretized reciprocal cell

Periodic gauge choice: where is the obstruction?



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Discretized reciprocal cell

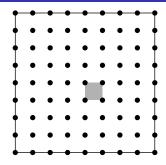


・ロット (雪) (日) (日) (日)

Curvature  $\equiv$  Berry phase per unit (reciprocal) area Berry phase on a small square:

$$\gamma = -\mathsf{Im} \log \langle u_{\mathbf{k}_1} | u_{\mathbf{k}_2} 
angle \langle u_{\mathbf{k}_2} | u_{\mathbf{k}_3} 
angle \langle u_{\mathbf{k}_3} | u_{\mathbf{k}_4} 
angle \langle u_{\mathbf{k}_4} | u_{\mathbf{k}_1} 
angle$$

Discretized reciprocal cell

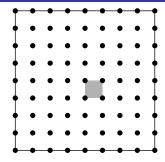


Curvature  $\equiv$  Berry phase per unit (reciprocal) area Berry phase on a small square:

$$\gamma = -\mathsf{Im} \log \langle u_{\mathbf{k}_1} | u_{\mathbf{k}_2} 
angle \langle u_{\mathbf{k}_2} | u_{\mathbf{k}_3} 
angle \langle u_{\mathbf{k}_3} | u_{\mathbf{k}_4} 
angle \langle u_{\mathbf{k}_4} | u_{\mathbf{k}_1} 
angle$$

Which branch of Im log?

Discretized reciprocal cell



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

NonAbelian (many-band):

 $\gamma = -\text{Im log det } S(\mathbf{k}_1, \mathbf{k}_2) S(\mathbf{k}_2, \mathbf{k}_3) S(\mathbf{k}_3, \mathbf{k}_4) S(\mathbf{k}_4, \mathbf{k}_1)$ 

$$\mathcal{S}_{\textit{nn'}}(\mathbf{k}_{s},\mathbf{k}_{s'})=\langle u_{\textit{nk}_{s}}|u_{\textit{nk}_{s'}}
angle$$

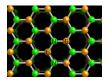
## Outline

- 1 What topology is about
- 2 Elements of Berryology
- 3 Chern insulators
- 4 Noncrystalline insulators
- 5 Chern number as a cumulant moment in **r** space

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

6 Conclusions

# Hexagonal boron nitride (& graphene)

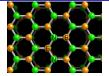


Topologically trivial:  $C_1 = 0$ . Why?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Need to break time-reversal invariance!
- B field in the quantum Hall effect (TKNN invariant)
- What about graphene?

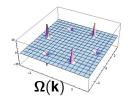
# Hexagonal boron nitride (& graphene)



```
Topologically trivial: C_1 = 0. Why?
```

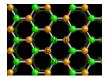
Symmetry properties

- Time-reversal symmetry  $\rightarrow \Omega(\mathbf{k}) = -\Omega(-\mathbf{k})$
- $\blacksquare \text{ Inversion symmetry} \rightarrow \Omega(\textbf{k}) = \Omega(-\textbf{k})$



- Need to break time-reversal invariance!
- B field in the quantum Hall effect (TKNN invariant)
- What about graphene?

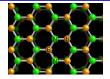
# The "Haldanium" paradigm (F.D.M. Haldane, 1988)



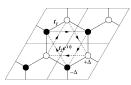
## + staggered B field

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

# The "Haldanium" paradigm (F.D.M. Haldane, 1988)

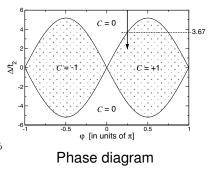


# + staggered B field



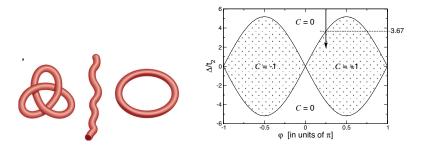
Tight-binding parameters:

- 1st-neighbor hopping t<sub>1</sub>
- staggered onsite ±∆
- **complex 2nd-neighbor**  $t_2 e^{i\phi}$



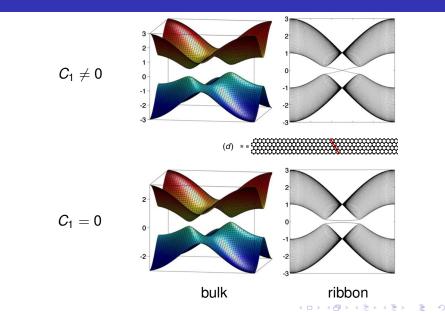
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# **Topological order**



- Ground state wavefunctions differently "knotted" in k space
- Topological order very robust
- C<sub>1</sub> switched only via a metallic state: "cutting the knot"
- Displays quantum Hall effect at B = 0

## Bulk-boundary correspondence



# Wannier functions do not exist when $C_1 \neq 0$ (Thouless, 1984)

Proof by absurd. If WFs exist then

$$\psi_{\mathbf{k}}\rangle = \sum_{\mathbf{R}} \mathrm{e}^{i\mathbf{k}\cdot\mathbf{R}} |\mathbf{R}\rangle$$

This implies

 $|\psi_{{f k}+{f G}}
angle = |\psi_{{f k}}
angle$  (so called "periodic gauge")

When C<sub>1</sub> ≠ 0 a periodic gauge in the whole BZ does not exist: topological obstruction

# Wannier functions do not exist when $C_1 \neq 0$ (Thouless, 1984)

Proof by absurd. If WFs exist then

$$|\psi_{\mathbf{k}}
angle = \sum_{\mathbf{R}} \mathrm{e}^{i\mathbf{k}\cdot\mathbf{R}} |\mathbf{R}
angle$$

This implies

 $|\psi_{{f k}+{f G}}
angle = |\psi_{{f k}}
angle$  (so called "periodic gauge")

When C<sub>1</sub> ≠ 0 a periodic gauge in the whole BZ does not exist: topological obstruction

#### Simulation by T. Thonhauser & D. Vanderbilt, 2006

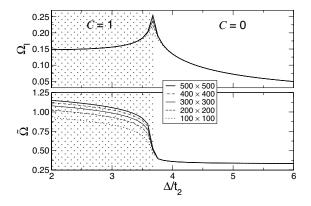


FIG. 8. Gauge-independent part  $\Omega_I$  and gauge-dependent part  $\widetilde{\Omega}$  of the spread functional for the Haldane model as a function of the **k**-mesh density.

(日)

# Chern insulators

Besides Haldanium (a very popular computational material), do Chern insulators exist in nature?

- Discovery announced at the 2012 APS March Meeting, not confirmed by any preprint yet (to my knowledge)
- Also called QAHE (quantum anomalous Hall effect). Why?

 Nonexotic ferromagnetic metals in 3d (Ni, Co, Fe) show AHE: Hall effect in zero B field.
 Nonquantized: Berry curvature integrated within the Fermi volume.

# Time-reversal symmetric topological insulators

#### In 2d:

- Kane-Mele model Hamiltonian, 2005
- A novel invariant, two-valued (Z<sub>2</sub>)
- Zero order picture: two copies of the Haldane model
- Discovered: Hg<sub>x</sub>Cd<sub>1-x</sub>Te quantum wells, 2007 (L. Molenkamp & al.)

#### In 3d:

- Predicted by Fu, Kane, and Mele in 2007
- Discovered:  $Bi_xSb_{1-x}$ , 2008 (M.Z. Hasan & al.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Time-reversal symmetric topological insulators

#### In 2d:

- Kane-Mele model Hamiltonian, 2005
- A novel invariant, two-valued (Z<sub>2</sub>)
- Zero order picture: two copies of the Haldane model
- Discovered: Hg<sub>x</sub>Cd<sub>1-x</sub>Te quantum wells, 2007 (L. Molenkamp & al.)

#### In 3d:

- Predicted by Fu, Kane, and Mele in 2007
- Discovered:  $Bi_xSb_{1-x}$ , 2008 (M.Z. Hasan & al.)

(日) (日) (日) (日) (日) (日) (日)

# Time-reversal symmetric topological insulators

#### In 2d:

- Kane-Mele model Hamiltonian, 2005
- A novel invariant, two-valued (Z<sub>2</sub>)
- Zero order picture: two copies of the Haldane model
- Discovered: Hg<sub>x</sub>Cd<sub>1-x</sub>Te quantum wells, 2007 (L. Molenkamp & al.)

#### In 3d:

- Predicted by Fu, Kane, and Mele in 2007
- Discovered: Bi<sub>x</sub>Sb<sub>1-x</sub>, 2008 (M.Z. Hasan & al.)

(日) (日) (日) (日) (日) (日) (日)

# 2012 O. E. Buckley Condensed Matter Physics Prize

- "For the theoretical prediction and experimental observation of the quantum spin Hall effect, opening the field of topological insulators"
- Charles L. Kane (U. Pennsylvania) Laurens W. Molenkamp (U. Würzburg, Germany) Shoucheng Zhang (Stanford U.)







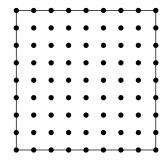
## Outline

- 1 What topology is about
- 2 Elements of Berryology
- 3 Chern insulators
- 4 Noncrystalline insulators
- 5 Chern number as a cumulant moment in **r** space

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

#### 6 Conclusions

## Computing the Chern number

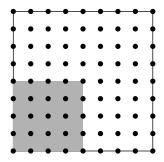


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

# Computing the Chern number

Cell doubling:

- Reciprocal cell reduced fourfold
- # of states increased fourfold
- the states are the same
- C<sub>1</sub> invariant



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

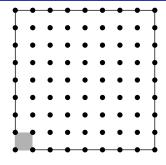
# Computing the Chern number

Cell doubling:

- Reciprocal cell reduced fourfold
- # of states increased fourfold
- the states are the same
- $\square$   $C_1$  invariant

Down to the very minimum:

- One state on many loops  $\rightarrow$  Many states on a single loop
- The gauge is now periodical throughout: Where is the obstruction?
- Eventually,  $C_1$  is a  $\mathbf{k} = 0$  property!



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### Interpretation of the single point formula

In the large supercell limit

$$C_1 = rac{1}{2\pi} \int_{\mathrm{BZ}} d\mathbf{k} \; \mathbf{\Omega}(\mathbf{k}) \quad o \quad rac{1}{2\pi} rac{(2\pi)^2}{A_\mathrm{c}} \mathbf{\Omega}(0)$$

Chern number  $\rightarrow$  curvature per unit sample area: **no integration** 

 Ω(0) is a linear response of the ground state to an infinitesimal "twist" or "flux" in the many-body Hamiltonian:

$$\hat{H}(\mathbf{k}) = \frac{1}{2m_e} \sum_{i=1}^{N} |\mathbf{p}_i + \frac{e}{c} \mathbf{A}(\mathbf{r}_i) + \hbar \mathbf{k}|^2 + \hat{V}$$

 $\Omega(0) = i \sum_{n=1}^{N} (\langle \partial_{k_1} u_{n0} | \partial_{k_2} u_{n0} \rangle - \langle \partial_{k_2} u_{n0} | \partial_{k_1} u_{n0} \rangle)$ 

### Interpretation of the single point formula

In the large supercell limit

$$C_1 = rac{1}{2\pi} \int_{\mathrm{BZ}} d\mathbf{k} \; \mathbf{\Omega}(\mathbf{k}) \quad o \quad rac{1}{2\pi} rac{(2\pi)^2}{A_\mathrm{c}} \mathbf{\Omega}(0)$$

Chern number  $\rightarrow$  curvature per unit sample area: **no integration** 

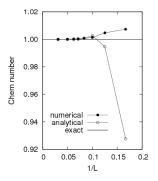
 Ω(0) is a linear response of the ground state to an infinitesimal "twist" or "flux" in the many-body Hamiltonian:

$$\hat{H}(\mathbf{k}) = rac{1}{2m_e}\sum_{i=1}^{N}|\mathbf{p}_i + rac{e}{c}\mathbf{A}(\mathbf{r}_i) + \hbar\mathbf{k}|^2 + \hat{V}$$

$$\Omega(0) = i \sum_{n=1}^{N} (\langle \partial_{k_1} u_{n0} | \partial_{k_2} u_{n0} \rangle - \langle \partial_{k_2} u_{n0} | \partial_{k_1} u_{n0} \rangle)$$

# Convergence with supercell size (D. Ceresoli & R.R. 2007)

Chern number as a function of the supercell size, evaluated using the single-point formulas for the Haldane model Hamiltonian. The largest *L* corresponds to 2048 sites in the supercell.



・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

- Is topological order purely a k space business?
- Can I detect topological order in a finite sample ("open boundary conditions")?
- Can I detect topological order in a macroscopically inhomogeneous sample?
- The one-body density matrix (ground state projector):
   determines the ground state (independent electrons)
   embeds the information about topological order
   is "shortsighted" ( © by W. Kohn)
   hence......

(日) (日) (日) (日) (日) (日) (日)

- Is topological order purely a k space business?
- Can I detect topological order in a finite sample ("open boundary conditions")?
- Can I detect topological order in a macroscopically inhomogeneous sample?
- The one-body density matrix (ground state projector):
   determines the ground state (independent electrons)
   embeds the information about topological order
   is "shortsighted" ( © by W. Kohn)
   hence......

## Outline

- 1 What topology is about
- 2 Elements of Berryology
- 3 Chern insulators
- 4 Noncrystalline insulators
- 5 Chern number as a cumulant moment in **r** space

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

#### 6 Conclusions

#### $P(\mathbf{r}, \mathbf{r}')$ ground-state projector

 $\mathbf{P}(\mathbf{r},\mathbf{r}')$  uniquely determines the ground state

If we look at P(r, r') in the bulk of a sample the boundary conditions (either open or periodic) become irrelevant

(日) (日) (日) (日) (日) (日) (日)

- Asymptotic behavior of  $|P(\mathbf{r}, \mathbf{r}')|$  for  $|\mathbf{r} \mathbf{r}'| \to \infty$ :
  - Power law in metals
  - Exponential in insulators
  - Gaussian in the IQHE

The "localization tensor", a.k.a. second cumulant moment of the electron distribution

Definition within OBCs:

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{2N}\int d\mathbf{r}d\mathbf{r}' (\mathbf{r}-\mathbf{r}')_{\alpha}(\mathbf{r}-\mathbf{r}')_{\beta} |P(\mathbf{r},\mathbf{r}')|^{2}$$

- Always well defined (r operator harmless within OBCs)
- Intensive (size-consistent)
- Real symmetric
- Original theory for correlated wavefunctions

Identical transformation:

$$Q(\mathbf{r},\mathbf{r}') = \delta(\mathbf{r}-\mathbf{r}') - P(\mathbf{r},\mathbf{r}') \qquad \langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{N} \operatorname{Tr}_{all \text{ space}} \{r_{\alpha}Pr_{\beta}Q\}$$

What about the thermodynamic limit?

 $\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} \text{ diverges in metals}$   $\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} \text{ converges in all insulators:}$ quantum Hall, band, Chern,  $\mathbb{Z}_{2}$ , Anderson...... (so far)

The "localization tensor", a.k.a. second cumulant moment of the electron distribution

Definition within OBCs:

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{2N}\int d\mathbf{r}d\mathbf{r}' (\mathbf{r}-\mathbf{r}')_{\alpha}(\mathbf{r}-\mathbf{r}')_{\beta} |P(\mathbf{r},\mathbf{r}')|^{2}$$

- Always well defined (r operator harmless within OBCs)
- Intensive (size-consistent)
- Real symmetric
- Original theory for correlated wavefunctions

Identical transformation:

$$Q(\mathbf{r},\mathbf{r}') = \delta(\mathbf{r}-\mathbf{r}') - P(\mathbf{r},\mathbf{r}') \qquad \langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{N} \operatorname{Tr}_{\mathsf{all space}} \{r_{\alpha}Pr_{\beta}Q\}$$

What about the thermodynamic limit?

 $\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} \text{ diverges in metals}$  $\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} \text{ converges in all insulators:}$ 

quantum Hall, band, Chern, Z<sub>2</sub>, Anderson..... (so far)

The "localization tensor", a.k.a. second cumulant moment of the electron distribution

Definition within OBCs:

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{2N}\int d\mathbf{r}d\mathbf{r}' (\mathbf{r}-\mathbf{r}')_{\alpha}(\mathbf{r}-\mathbf{r}')_{\beta} |P(\mathbf{r},\mathbf{r}')|^{2}$$

- Always well defined (r operator harmless within OBCs)
- Intensive (size-consistent)
- Real symmetric
- Original theory for correlated wavefunctions

Identical transformation:

$$Q(\mathbf{r},\mathbf{r}') = \delta(\mathbf{r}-\mathbf{r}') - P(\mathbf{r},\mathbf{r}') \qquad \langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{N} \operatorname{Tr}_{\mathsf{all space}} \{r_{\alpha}Pr_{\beta}Q\}$$

What about the thermodynamic limit?

 $\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} \text{ diverges in metals}$   $\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} \text{ converges in all insulators:}$ quantum Hall, band, Chern,  $\mathbb{Z}_{2}$ , Anderson...... (so far)

The "localization tensor", a.k.a. second cumulant moment of the electron distribution

Definition within OBCs:

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{2N}\int d\mathbf{r}d\mathbf{r}' (\mathbf{r}-\mathbf{r}')_{\alpha}(\mathbf{r}-\mathbf{r}')_{\beta} |P(\mathbf{r},\mathbf{r}')|^{2}$$

- Always well defined (r operator harmless within OBCs)
- Intensive (size-consistent)
- Real symmetric
- Original theory for correlated wavefunctions

Identical transformation:

$$Q(\mathbf{r},\mathbf{r}') = \delta(\mathbf{r}-\mathbf{r}') - P(\mathbf{r},\mathbf{r}') \qquad \langle r_{lpha}r_{eta} 
angle_{\mathrm{c}} = rac{1}{N} \mathrm{Tr}_{\mathrm{all space}} \{ r_{lpha} P r_{eta} Q \}$$

What about the thermodynamic limit?

$$\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} \text{ diverges in metals}$$

$$\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} \text{ converges in all insulators:}$$
quantum Hall, band, Chern,  $\mathbb{Z}_{2}$ , Anderson...... (so far)

Switching to a crystalline solid (PBCs):

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{N} \operatorname{Tr}_{all \ space} \{r_{\alpha}Pr_{\beta}Q\} \quad \rightarrow \quad \frac{1}{N_{c}} \operatorname{Tr}_{cell} \{r_{\alpha}Pr_{\beta}Q\}$$

#### r operator harmless when sandwiched between P and Q

In terms of Bloch states  $e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}$  (in 2d):

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{A_{c}}{(2\pi)^{2}N_{c}} \int d\mathbf{k} \left( \sum_{n} \langle \partial_{k_{\alpha}}u_{n\mathbf{k}} | \partial_{k_{\beta}}u_{n\mathbf{k}} \rangle - \sum_{n,n'} \langle u_{n\mathbf{k}} | \partial_{k_{\alpha}}u_{n'\mathbf{k}} \rangle \langle \partial_{k_{\beta}}u_{n'\mathbf{k}} | u_{n\mathbf{k}} \rangle \right)$$

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Switching to a crystalline solid (PBCs):

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{N} \operatorname{Tr}_{all \ space} \{r_{\alpha}Pr_{\beta}Q\} \quad \rightarrow \quad \frac{1}{N_{c}} \operatorname{Tr}_{cell} \{r_{\alpha}Pr_{\beta}Q\}$$

r operator harmless when sandwiched between P and Q

In terms of Bloch states  $e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}$  (in 2d):

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{A_{c}}{(2\pi)^{2}N_{c}} \int d\mathbf{k} \left( \sum_{n} \langle \partial_{k_{\alpha}}u_{n\mathbf{k}} | \partial_{k_{\beta}}u_{n\mathbf{k}} \rangle - \sum_{n,n'} \langle u_{n\mathbf{k}} | \partial_{k_{\alpha}}u_{n'\mathbf{k}} \rangle \langle \partial_{k_{\beta}}u_{n'\mathbf{k}} | u_{n\mathbf{k}} \rangle \right)$$

(日) (日) (日) (日) (日) (日) (日)

## Marzari-Vanderbilt

$$\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} = \frac{1}{N_{c}} \Omega_{I} \quad \text{MV gauge-invariant quadratic spread}$$

Naturally endowed with an off-diagonal imaginary part:

$$\operatorname{Im} \langle r_1 r_2 \rangle_c = \frac{A_c}{(2\pi)^2 N_c} \operatorname{Im} \int d\mathbf{k} \sum_n \langle \partial_{k_1} u_{n\mathbf{k}} | \partial_{k_2} u_{n\mathbf{k}} \rangle$$

Chern number:

$$C_1 = -\frac{1}{\pi} \operatorname{Im} \int d\mathbf{k} \sum_n \left\langle \partial_{k_1} u_{n\mathbf{k}} | \partial_{k_2} u_{n\mathbf{k}} \right\rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} = \frac{1}{N_{c}} \Omega_{I} \quad \text{MV gauge-invariant quadratic spread}$$

Naturally endowed with an off-diagonal imaginary part:

$$\operatorname{Im} \langle r_1 r_2 \rangle_{\mathrm{c}} = \frac{A_c}{(2\pi)^2 N_{\mathrm{c}}} \operatorname{Im} \int d\mathbf{k} \sum_n \langle \partial_{k_1} u_{n\mathbf{k}} | \partial_{k_2} u_{n\mathbf{k}} \rangle$$

Chern number:

$$C_1 = -\frac{1}{\pi} \operatorname{Im} \int d\mathbf{k} \sum_n \left\langle \partial_{k_1} u_{n\mathbf{k}} | \partial_{k_2} u_{n\mathbf{k}} \right\rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\sum_{\alpha} \langle r_{\alpha} r_{\alpha} \rangle_{c} = \frac{1}{N_{c}} \Omega_{I} \quad \text{MV gauge-invariant quadratic spread}$$

Naturally endowed with an off-diagonal imaginary part:

$$\operatorname{Im} \langle r_1 r_2 \rangle_{\mathrm{c}} = \frac{A_c}{(2\pi)^2 N_{\mathrm{c}}} \operatorname{Im} \int d\mathbf{k} \sum_n \langle \partial_{k_1} u_{n\mathbf{k}} | \partial_{k_2} u_{n\mathbf{k}} \rangle$$

Chern number:

$$C_1 = -\frac{1}{\pi} \operatorname{Im} \int d\mathbf{k} \sum_n \left\langle \partial_{k_1} u_{n\mathbf{k}} | \partial_{k_2} u_{n\mathbf{k}} \right\rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

# Metric-curvature tensor (2d, 1 band)

$$\mathcal{F}_{\alpha\beta}(\mathbf{k}) = \langle \partial_{k_{\alpha}} u_{\mathbf{k}} | \partial_{k_{\beta}} u_{\mathbf{k}} \rangle - \langle \partial_{k_{\alpha}} u_{\mathbf{k}} | u_{\mathbf{k}} \rangle \langle u_{\mathbf{k}} | \partial_{k_{\beta}} u_{\mathbf{k}} \rangle$$

$$\Omega_{\rm I} = \frac{A_c}{(2\pi)^2} \int_{\rm BZ} d\mathbf{k} \left[ g_{xx}(\mathbf{k}) + g_{yy}(\mathbf{k}) \right] \text{ gauge-invariant spread}$$

$$C_1 = \frac{1}{2\pi} \int_{\rm BZ} d\mathbf{k} \, \boldsymbol{\Omega}(\mathbf{k}) \text{ Chern number}$$

(ロ)、(型)、(E)、(E)、 E) のQの

Whenever  $\Omega_{I}$  is finite,  $C_{1}$  is quantized

# Metric-curvature tensor (2d, 1 band)

$$\mathcal{F}_{\alpha\beta}(\mathbf{k}) = \langle \partial_{\mathbf{k}_{\alpha}} \mathbf{u}_{\mathbf{k}} | \partial_{\mathbf{k}_{\beta}} \mathbf{u}_{\mathbf{k}} \rangle - \langle \partial_{\mathbf{k}_{\alpha}} \mathbf{u}_{\mathbf{k}} | \mathbf{u}_{\mathbf{k}} \rangle \langle \mathbf{u}_{\mathbf{k}} | \partial_{\mathbf{k}_{\beta}} \mathbf{u}_{\mathbf{k}} \rangle$$

$$\begin{split} \Omega_{\rm I} &= \frac{A_c}{(2\pi)^2} \int_{\rm BZ} d{\bf k} \left[ g_{xx}({\bf k}) + g_{yy}({\bf k}) \right] \quad \text{gauge-invariant spread} \\ C_1 &= \frac{1}{2\pi} \int_{\rm BZ} d{\bf k} \; \Omega({\bf k}) \qquad \text{Chern number} \end{split}$$

(ロ)、(型)、(E)、(E)、 E) のQの

Whenever  $\Omega_{\rm I}$  is finite,  $C_1$  is quantized

### Metric-curvature tensor (2d, 1 band)

$$\mathcal{F}_{\alpha\beta}(\mathbf{k}) = \langle \partial_{\mathbf{k}_{\alpha}} u_{\mathbf{k}} | \partial_{\mathbf{k}_{\beta}} u_{\mathbf{k}} \rangle - \langle \partial_{\mathbf{k}_{\alpha}} u_{\mathbf{k}} | u_{\mathbf{k}} \rangle \langle u_{\mathbf{k}} | \partial_{\mathbf{k}_{\beta}} u_{\mathbf{k}} \rangle$$

$$\begin{split} \Omega_{\rm I} &= \frac{A_c}{(2\pi)^2} \int_{\rm BZ} d{\bf k} \left[ g_{xx}({\bf k}) + g_{yy}({\bf k}) \right] \quad \text{gauge-invariant spread} \\ C_1 &= \frac{1}{2\pi} \int_{\rm BZ} d{\bf k} \; \Omega({\bf k}) \qquad \text{Chern number} \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Whenever  $\Omega_{I}$  is finite,  $C_{1}$  is quantized

# $\Omega_{\rm I}$ finite, but WFs do not exist (Simulation by Thonhauser & Vanderbilt, 2006)

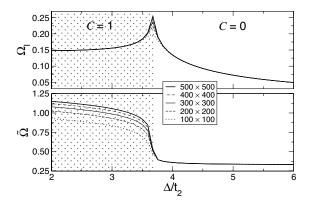


FIG. 8. Gauge-independent part  $\Omega_I$  and gauge-dependent part  $\widetilde{\Omega}$  of the spread functional for the Haldane model as a function of the **k**-mesh density.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

#### Chern number in terms of the density matrix

$$C_1 = -4\pi \frac{N_c}{A_c} \text{Im} \langle r_1 r_2 \rangle_c = -\frac{4\pi}{A_c} \text{Im} \text{Tr}_{\text{cell}} \{r_1 P r_2 Q\}$$

 Proof for a lattice model: Kitaev 2006, Prodan 2009 (Thanks to D. Vanderbilt)

#### General proof implicit in Sgiarovello et al. 2001

 Imaginary part quantized whenever real part is finite (true even for correlated wavefunctions, e.g. FQHE)

(日) (日) (日) (日) (日) (日) (日)

■ I started with a **real symmetric** tensor  $\langle r_{\alpha}r_{\beta}\rangle_{c}$ : Where did the imaginary part sneak?

#### Chern number in terms of the density matrix

$$C_1 = -4\pi \frac{N_c}{A_c} \text{Im} \langle r_1 r_2 \rangle_c = -\frac{4\pi}{A_c} \text{Im} \text{Tr}_{\text{cell}} \{ r_1 P r_2 Q \}$$

- Proof for a lattice model: Kitaev 2006, Prodan 2009 (Thanks to D. Vanderbilt)
- General proof implicit in Sgiarovello et al. 2001
- Imaginary part quantized whenever real part is finite (true even for correlated wavefunctions, e.g. FQHE)

(日) (日) (日) (日) (日) (日) (日)

■ I started with a **real symmetric** tensor  $\langle r_{\alpha}r_{\beta}\rangle_{c}$ : Where did the imaginary part sneak?

### Chern number in terms of the density matrix

$$C_1 = -4\pi \frac{N_c}{A_c} \text{Im} \langle r_1 r_2 \rangle_c = -\frac{4\pi}{A_c} \text{Im} \text{Tr}_{\text{cell}} \{ r_1 P r_2 Q \}$$

- Proof for a lattice model: Kitaev 2006, Prodan 2009 (Thanks to D. Vanderbilt)
- General proof implicit in Sgiarovello et al. 2001
- Imaginary part quantized whenever real part is finite (true even for correlated wavefunctions, e.g. FQHE)

(ロ) (同) (三) (三) (三) (○) (○)

I started with a **real symmetric** tensor  $\langle r_{\alpha}r_{\beta}\rangle_c$ : Where did the imaginary part sneak?

# From OBCs to PBCs

The apparently innocent ansatz:

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{N} \operatorname{Tr}_{all \ space} \{r_{\alpha}Pr_{\beta}Q\} \quad \rightarrow \quad \frac{1}{N_{c}} \operatorname{Tr}_{cell} \{r_{\alpha}Pr_{\beta}Q\}$$

PBCs:

•  $\langle r_{\alpha}r_{\beta}\rangle_{c}$  complex Hermitian Cartesian tensor

- P projects on an infinite-dimensional manifold
- Sandwiching between P and Q not needed for the imaginary antisymmetric part:

 $\operatorname{Im} \langle r_1 r_2 \rangle_{c} = \operatorname{Im} \operatorname{Tr} \{ r_1 P r_2 Q \} = -\operatorname{Im} \operatorname{Tr} \{ r_1 P r_2 P \}$ 

(日) (日) (日) (日) (日) (日) (日)

# From OBCs to PBCs

The apparently innocent ansatz:

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{N} \operatorname{Tr}_{all \ space} \{r_{\alpha}Pr_{\beta}Q\} \quad \rightarrow \quad \frac{1}{N_{c}} \operatorname{Tr}_{cell} \{r_{\alpha}Pr_{\beta}Q\}$$

OBCs:

- $\langle r_{\alpha}r_{\beta}\rangle_{c}$  real symmetric Cartesian tensor
- P projects on a finite-dimensional manifold

PBCs:

- $\langle r_{\alpha}r_{\beta}\rangle_{c}$  complex Hermitian Cartesian tensor
- P projects on an infinite-dimensional manifold
- Sandwiching between P and Q not needed for the imaginary antisymmetric part:

 $\operatorname{Im} \langle r_1 r_2 \rangle_{c} = \operatorname{Im} \operatorname{Tr} \{ r_1 P r_2 Q \} = -\operatorname{Im} \operatorname{Tr} \{ r_1 P r_2 P \}$ 

(ロ) (同) (三) (三) (三) (○) (○)

# From OBCs to PBCs

The apparently innocent ansatz:

$$\langle r_{\alpha}r_{\beta}\rangle_{c} = \frac{1}{N} \operatorname{Tr}_{all \ space} \{r_{\alpha}Pr_{\beta}Q\} \quad \rightarrow \quad \frac{1}{N_{c}} \operatorname{Tr}_{cell} \{r_{\alpha}Pr_{\beta}Q\}$$

OBCs:

- $\langle r_{\alpha}r_{\beta}\rangle_{c}$  real symmetric Cartesian tensor
- P projects on a finite-dimensional manifold

PBCs:

- $\langle r_{\alpha}r_{\beta}\rangle_{c}$  complex Hermitian Cartesian tensor
- P projects on an infinite-dimensional manifold
- Sandwiching between P and Q not needed for the imaginary antisymmetric part:

$$\operatorname{Im} \langle r_1 r_2 \rangle_{c} = \operatorname{Im} \operatorname{Tr} \{ r_1 P r_2 Q \} = -\operatorname{Im} \operatorname{Tr} \{ r_1 P r_2 P \}$$

(日) (日) (日) (日) (日) (日) (日)

# Numerical simulations

#### Within OBCs:

Im Tr{
$$r_1 P r_2 P$$
} =  $\frac{1}{2i}$ Tr{ [ $P r_1 P, P r_2 P$ ]} = 0  
What happens?

### Numerical simulations

#### Within OBCs:

What

Im Tr{
$$r_1 P r_2 P$$
} =  $\frac{1}{2i}$ Tr{ [ $P r_1 P$ ,  $P r_2 P$ ]} = 0  
happens?

Answer: computer simulations on Haldanium, once more

PHYSICAL REVIEW B 84, 241106(R) (2011)

Mapping topological order in coordinate space

Raffaello Bianco and Raffaele Resta

## Chern number as a local quantity

Im Tr{
$$r_1 P r_2 P$$
} =  $\frac{1}{2i}$ Tr{[ $P r_1 P, P r_2 P$ ]}

$$C_{1} = -\frac{2\pi i}{A_{c}} \operatorname{Tr}_{cell} \{ [Pr_{1}P, Pr_{2}P] \} \equiv -2\pi i \frac{1}{A_{c}} \int_{cell} d\mathbf{r} \langle \mathbf{r} | [Pr_{1}P, Pr_{2}P] | \mathbf{r} \rangle$$

 $C_1$  macroscopic average of  $\mathfrak{C}(\mathbf{r})$  $\mathfrak{C}(\mathbf{r}) = -2\pi i \langle \mathbf{r} | [Pr_1P, Pr_2P] | \mathbf{r} \rangle$  "topological marker"Can also be interpreted as the curvature per unit area!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Last but not least: Boundary conditions irrelevant

## Chern number as a local quantity

Im Tr{
$$r_1 P r_2 P$$
} =  $\frac{1}{2i}$ Tr{[ $P r_1 P, P r_2 P$ ]}

$$C_{1} = -\frac{2\pi i}{A_{c}} \operatorname{Tr}_{cell} \{ [Pr_{1}P, Pr_{2}P] \} \equiv -2\pi i \frac{1}{A_{c}} \int_{cell} d\mathbf{r} \langle \mathbf{r} | [Pr_{1}P, Pr_{2}P] | \mathbf{r} \rangle$$

 $C_1$  macroscopic average of  $\mathfrak{C}(\mathbf{r})$  $\mathfrak{C}(\mathbf{r}) = -2\pi i \langle \mathbf{r} | [Pr_1P, Pr_2P] | \mathbf{r} \rangle$  "topological marker" Can also be interpreted as the curvature per unit area!

(ロ) (同) (三) (三) (三) (○) (○)

Last but not least: Boundary conditions irrelevant

## Chern number as a local quantity

Im Tr{
$$r_1 P r_2 P$$
} =  $\frac{1}{2i}$ Tr{[ $P r_1 P, P r_2 P$ ]}

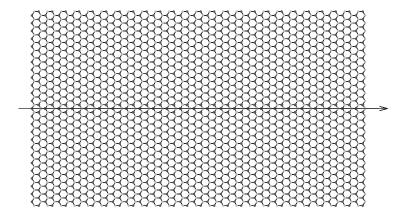
$$C_{1} = -\frac{2\pi i}{A_{c}} \operatorname{Tr}_{cell} \{ [Pr_{1}P, Pr_{2}P] \} \equiv -2\pi i \frac{1}{A_{c}} \int_{cell} d\mathbf{r} \langle \mathbf{r} | [Pr_{1}P, Pr_{2}P] | \mathbf{r} \rangle$$

 $C_1$  macroscopic average of  $\mathfrak{C}(\mathbf{r})$   $\mathfrak{C}(\mathbf{r}) = -2\pi i \langle \mathbf{r} | [Pr_1P, Pr_2P] | \mathbf{r} \rangle$  "topological marker" Can also be interpreted as the curvature per unit area!

(ロ) (同) (三) (三) (三) (○) (○)

Last but not least: Boundary conditions irrelevant

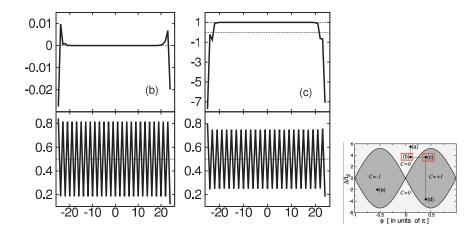
# Haldanium flake (OBCs)



Sample of 2550 sites, line with 50 sites

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

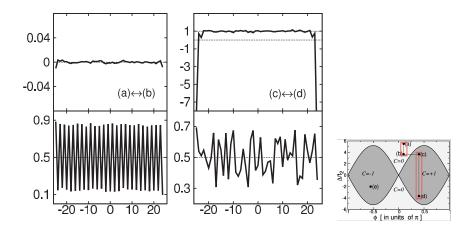
# Crystalline Haldanium (normal & Chern)



Topological marker (top); site occupancy (bottom)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへぐ

# Haldanium alloy (normal & Chern)

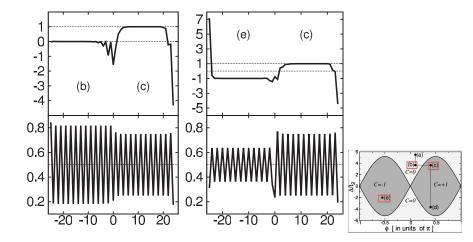


Topological marker (top); site occupancy (bottom)

・ロット (雪) (日) (日)

э.

# Haldanium heterojunctions



Topological marker (top); site occupancy (bottom)

・ロト・西ト・西ト・日下 ひゃぐ

## Outline

- 1 What topology is about
- 2 Elements of Berryology
- 3 Chern insulators
- 4 Noncrystalline insulators
- 5 Chern number as a cumulant moment in **r** space

#### 6 Conclusions

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

# Conclusions and perspectives

Topological invariants and topological order Wave function "knotted" in k space

- Topological invariants are measurable integers Very robust ("topologically protected") Most spectacular: quantum Hall effect
- Topological order without a *B* field: topological insulators
- Topological order is (also) a local property of the ground-state wave function: Our simulations
- What about other kinds of topological order (e.g. Z<sub>2</sub>)?

## Collaborators



Davide Ceresoli, now at CNR-ISTM, Milano



Raffaello Bianco, Ph. D. student at Univ. Trieste