The Electronic Structure of Dye-Sensitized TiO₂ Clusters from Many-Body Perturbation Theory Noa Marom

Center for Computational Materials Institute for Computational Engineering and Sciences The University of Texas at Austin

Dye-Sensitized Solar Cells

Regeneration is achieved by electron transfer from the electrolyte to the dye

Dye-Sensitized Solar Cells

How to make DSCs more efficient?

Also:

- Reduce disorder, defects, and surface states
- Physically separate the TiO₂ and the electrolyte

M. Gratzel Acc. Chem. Res. 42, 1788 (2009)

Methods

GW

Kohn-
Sham:
$$\left(-\frac{1}{2}\nabla^2 + V_{ion} + V_{Hartree} + V_{xc}\right)\varphi_i(r) = \varepsilon_i^{KS}\varphi_i(r)$$

The quasiparticle equation:

$$\left(-\frac{1}{2}\nabla^2 + V_{ion} + V_{Hartree} + \sum(r, r', E_i^{QP})\right)\psi_i(r) = E_i^{QP}\psi_i(r)$$

The GW approximation (Hedin, 1965):

The self-energy is approximated by the first order term in a perturbation series in the screened Coulomb interaction

$$\sum \approx i G W$$

e⁻

G₀**W**₀ (Hybertsen and Louie, 1986):

- Assume that the KS wave-function and eigenvalues are good approximations for the many-body wave-function and QP energies
- Calculate the QP energies non-self-consistently as perturbative corrections to the KS energies:

$$\boldsymbol{E}_{i}^{G_{0}W_{0}} = \boldsymbol{\varepsilon}_{i}^{KS} + \left\langle \boldsymbol{\varphi}_{i} \left| \boldsymbol{\Sigma}^{G_{0}W_{0}} - \boldsymbol{V}_{xc} \right| \boldsymbol{\varphi}_{i} \right\rangle$$

KS orbitals and energies are used to evaluate G₀ and W₀:

The results of G₀W₀ depend on the underlying DFT functional!

Computational Details

FHI-aims: all-electron code with numeric atom-centered orbital basis-sets

G₀W₀ implementation: X. Ren et al., *arXiv: 1201.0655v1*

- No pseudo-potential errors
- Periodic boundary conditions need not be imposed
 - No large vacuum regions
 - No artifacts from periodic replicas
- Good convergence behavior w/r to empty states
- The self-energy is calculated by analytical continuation

TiO₂ Clusters

- TiO₂ clusters have potential applications in photocatalysis and photovoltaics
- Their properties are strongly dependent on their size and structure- highly tunable
- Selectivity is a challenge because there is little control over which isomers form in experiments
 - Such clusters can be characterized only by indirect means

TiO₂ Clusters

A combination of

photoemission spectroscopy (PES) and *ab initio* simulations is often used to characterize clusters

- Typically a global minimum (GM) search is conducted, based on the assumption that the most stable isomers form in experiment
 - But... such calculations for TiO₂ clusters are not in agreement with PES experiments!

Zhai and Wang, JACS. 129, 3022 (2007)

Selection Mechanism for High VEA

- The clusters initially form as neutrals
- Several low-energy isomers form
- The clusters acquire an electron
 from the plasma (process 1→2)
- The cluster with the highest VEA "wins" the electron via energetically favorable charge transfer reactions
- Only the charged clusters go through mass spectrometry

Configuration Coordinate

- ★ The anions cool down and relax to the meta-stable state of the high VEA isomer (process 2→3)
- ***** The VDE is then measured by PES (process $3 \rightarrow 4$)

L. Kronik et al. Nature Materials 1, 49 (2002)

Computational Details

Step I: Structure Search:

A basin hopping algorithm based on DFT with the PBE functional was used to find isomers in a 1.25 eV interval from the GM

Gehrke and Reuter *PRB* 79, 085412 (2009)

N. Marom, M. Kim, and J. R. Chelikowsky, PRL 108, 106801 (2012)

Step II: GW

Results: TiO₂ Molecule

Tier 4 converged to 0.1 eV from experiment

G₀W₀@PBEh is in excellent agreement with experiment

N. Marom, J. E. Moussa, X. Ren, A. Tkatchenko, and J. R. Chelikowsky, PRB <u>84</u>, 245115 (2011)

Results: (TiO₂)_{2,3} Clusters Spectra

GW@PBEh, broadening 0.3 eV

Highest VEA isomers are in agreement with PES N. Marom, M. Kim, and J. R. Chelikowsky, *PRL* <u>108</u>, 106801 (2012)

Results: (TiO₂)₂₋₁₀ Clusters VEA and VDE

N. Marom, M. Kim, and J. R. Chelikowsky, PRL <u>108</u>, 106801 (2012)

Results: (TiO₂)_{4,5} Clusters Spectra

For some cluster sizes several isomers with high VEA were found. An isomer with lower Erel agrees with experiment better than the one with the highest VEA. A combination of isomers in the experimental spectra is also possible

N. Marom, et al. PRL <u>108</u>, 106801 (2012)

Experiments on anions select for clusters with high VEA rather than the most energetically stable isomers!

Localization on a single tri-coordinated Ti atom leads to high VEA!

Ti³⁺ sites on TiO₂ surfaces are highly reactive and play an essential role in photocatalysis and dissociative chemisorption

The selection for clusters with this feature may be useful for catalysis

N. Marom, M. Kim, and J. R. Chelikowsky, PRL 108, 106801 (2012)

CuPc: Self-Interaction Error

Self interaction error (SIE) – the spurious Coulomb interaction of an electron with itself

With the semi-local PBE functional, the repulsion caused by SIE shifts the highly localized b_{1g} orbital to a higher energy

The addition of a fraction of exact exchange in the hybrid functional mitigates the SIE

N. Marom, O. Hod, G. E. Scuseria, and L. Kronik, JCP <u>128</u>, 164107 (2008)

N. Marom, X. Ren, J. E. Moussa, J. R. Chelikowsky, and L. Kronik, PRB <u>84</u>, 195143 (2011)

CuPc: G₀W₀ Starting Point Dependence

N. Marom, X. Ren, J. E. Moussa, J. R. Chelikowsky, and L. Kronik, PRB <u>84</u>, 195143 (2011) The SIE propagates from DFT to G_0W_0 leading to a strong starting point dependence for the position of the highly localized b_{1g} orbital

GW@PBEh is in excellent agreement with experiment unlike GW@PBE

A Crystalline Phase of Dye-Sensitized TiO₂ Clusters

 $J|_{A}A|_{R}C|_{C}|_{S}S$

Published on Web 02/10/2010

The Crystalline Nanocluster Phase as a Medium for Structural and Spectroscopic Studies of Light Absorption of Photosensitizer Dyes on Semiconductor Surfaces

Good test bed for theory because the structure is well defined and a direct comparison to experiment is possible

Ti₂cat₂

Four units of $(TiO_2)_2$ cluster sensitized with 2 catechol (cat) dye molecules and capped with isopropyl alcohol (IPA) groups.

376 atoms/cell94 atoms/unit

Bound by weak van der Waals interactions

The TS Dispersion Correction

Functionals that rely on semi-local correlation do not provide a proper treatment of dispersion interactions!

The Tkatchenko-Scheffler (TS) scheme:

- C_{6ij} and R⁰_{ij} are determined from first principles considerations,
 based on Hirshfeld partitioning of the DFT charge density
- **S**_R is determined once per functional by fitting to the S22 data set

A. Tkatchenko and M. Scheffler, PRL 102, 073005 (2009)

Ti₂cat₂ Geometry Optimization

PBE gives no binding!

PBE+TS gives lattice parameters in good agreement with experiment

N. Marom, J. E. Moussa, X. Ren, A. Tkatchenko, and J. R. Chelikowsky, PRB <u>84</u>, 245115 (2011)

Catechol

Ti₂cat₂ Level Alignment

Ti₂cat₂ Spectrum

- The spectra of Ti₂cat₂
 without IPA are in good
 agreement with the PES of
 a monolayer of catechol on
 a TiO₂ surface
- The small model system
 captures the essence of the
 dye-TiO₂ interaction
- The addition of IPA changes the shape of the spectrum but the signature of catechol on TiO₂ is still clearly visible

N. Marom, J. E. Moussa, X. Ren, A. Tkatchenko, and J. R. Chelikowsky, PRB <u>84</u>, 245115 (2011)

Conclusion

MBPT within the G_0W_0 approximation gives:

- Accurate VEAs and VDEs that enable identifying the (TiO₂)₂₋₁₀ isomers observed in PES
- Accurate description of the electronic structure of metal-organic dyes, particularly with respect to the metal *d*-states
- Reliable predictions of the fundamental gaps and level alignment for dye-sensitized TiO₂ clusters

TiO₂ clusters: N. Marom, M. Kim, and J. R. Chelikowsky, *PRL* <u>108</u>, 106801 (2012) CuPc: N. Marom, X. Ren, J. E. Moussa, J. R. Chelikowsky, and L. Kronik, *PRB* <u>84</u>, 195143 (2011)

Dye-sensitized TiO₂ clusters : N. Marom, J. E. Moussa, X. Ren, A. Tkatchenko, and J. R. Chelikowsky, *PRB* <u>84</u>, 245115 (2011)