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Density functional theory

Minimize

Eel{ψ} =
occ
∑

α

〈ψα|T+vext|ψα〉+EHxc[n]−
occ
∑

αβ

ǫβα(〈ψα|ψβ〉−δαβ)

where

n(r) =

occ
∑

α

ψ∗
α(r)ψβ(r)

and gradient is δE/δ〈ψα|
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Planewaves and pseudopotentials

Periodicity of the solid leads to Bloch theorem:

ψnk(r) ∝ e ik·runk(r)

and the cell periodic part is expanded in planewaves:

unk(r) =
∑

G

unk(G)e
iG·r

This is efficient if the core electrons are replaced by
pseudopotentials.
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Projector Augmented Wave Method

The PAW method (Blöchl) projects from pseudofunctions back
to all-electron valence space functions.

|ψ〉 = T |ψ̃〉

T = 1 +
∑

i ,R

[

|φiR〉 − |φ̃iR〉
]

〈p̃iR|

〈ψ|A|ψ〉 = 〈ψ̃|A|ψ̃〉+
∑

ij ,R

〈ψ̃|p̃iR〉〈p̃jR|ψ̃〉 ×

(

〈φiR|A|φjR〉 − 〈φ̃iR|A|φ̃jR〉
)
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Homogeneous electric field

V (R+ r) = V (r)
V (r) + eE · r

“Obvious” coupling between external electric field E and
electric charge leads to energy term eE · r

This term is OK for finite systems but not for infinite
systems!

Appear to have lost all bound states!
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Modern Theory of Polarization

King-Smith and Vanderbilt showed that polarization does
not suffer from unboundedness:

P = −
ie

(2π)3

∑

n

∫

BZ

dk〈unk|∇k|unk〉

Nunes and Gonze showed how polarization enters into a
well-posed minimization scheme with finite electric field:

E [ψ,E] = E [ψ]− ΩE · P(ψ)
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Inclusion of a Finite Electric Field

Minimize E = E0 − P · E, where:

P is computed via PAW transform and discretization1

Generalized norm constraint is imposed: 〈ψn|S |ψm〉 = δnm

On-site dipole contribution from T is included:

〈ũnk|T
†
k i∇kTk|ũnk〉,

|ϕI
q,R,k〉 = e−ik·(r−R)|ϕI

q,k〉

Form gradient:

δE/δ〈umk| = δE0/δ〈umk| − E·δP/δ〈umk|

Implemented in Abinit, including spin polarized systems,
spinors, spin-orbit coupling

1King-Smith and Vanderbilt, cond-matt; Zwanziger et al., Comp. Mater.

Sci. 58, 113 (2012)
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Convergence with k-mesh
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Applications

Polarization is computed as a
function of applied field and fit
to the form (SI units for
polarization and field):

Pi = ǫ0χ
(1)
ij Ej + 2ǫ0dijkEjEk ,
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Applications

High and low frequency susceptibility: χαβ = dPα/dEβ

Second order susceptibilities

Compound ǫ0 ǫ∞ d123 pm/V

AlP (LDA) 10.26 8.01 21.5
(PBE) 10.09 7.84 23.2
(expt) 9.8 7.5

AlAs (LDA) 11.05 8.75 32.7
(PBE) 10.89 8.80 38.8
(expt) 10.16 8.16 32

AlSb (LDA) 12.54 11.17 98.3
(PBE) 12.83 11.45 103

(PBE + SO) 9.76
(expt) 11.68 9.88 98
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Application: MgO Dielectric

Method ǫ∞

PAW E-field, PBE 3.089
PAW DFPT, LDA 3.057
NCPP DFPT, LDA 3.063

Expt 3.014

N.B. in DFPT, ∂2E
∂Ei∂Ej

∣

∣

∣

0
is

computed directly, without
presence of a field.

MgO in Finite Electric Field
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Photoelasticity

Inverse of dielectric tensor changed by stress or strain:

∆Bij = pijklǫkl = πijklσkl

Compound ǫ p11 p21 p44
Si (LDA) 12.4 -0.106 0.015 -0.052

(PBE) 12.2 -0.112 0.010 -0.061
(expt) 11.7 -0.094 0.017 -0.051

C (LDA) 5.71 -0.263 0.0673 -0.160
(PBE) 5.79 -0.268 0.0643 -0.171
(expt) 5.65–5.7 -0.244 – -0.42 0.042–0.27 -0.172 – -0.162
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Photoelasticity in oxides

Quantity MgO BaO SnO
C11 325.8 158.3 111.7
C33 43.4
C12 98.8 46.8 95.0
C13 18.9
C44 162.5 35.7 30.4
C66 85.2
π11 -0.980 0.990 -1.70
π33 0.91
π12 0.172 -0.176 2.19
π13 6 6.20
π44 -0.446 -1.26 2.31
π66 0.97
ǫ
∞

11 3.04 4.27 8.67
ǫ
∞

33 7.04
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Homogeneous magnetic fields in insulators

One approach to magnetic fields in periodic insulators is
the long wavelength approach of Louie and co-workers:
B → B cos(q · r) with q → 0.

Problematic: cannot always find |∂ku〉 such that
〈∂ku|u

0
k〉 = 0 AND |u0k+G〉 = e iG·r|u0k〉.

In 2005 and 2006, Ceresoli, Thonhauser, Resta, and
Vanderbilt established:

M =
1

2c(2π)3
Im
∑

nn′

∫

BZ

dk〈∂kun′k|×(Hkδnn′+Enn′k)|∂kunk〉

C =
i

2π

∑

n

∫

BZ

dk〈∂kunk| × |∂kunk〉
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Magnetic Translation Symmetry

Recall gauge-dependent Hamiltonian:

H =
1

2
(p+

1

c
A)2 + V

In 2010, Essin et al.2 (see also Brown, Zak) discussed
magnetic translation symmetry:

Or1,r2 = Ōr1,r2e
−iB·r1×r2/2c

where Ō has lattice symmetry.

2PRB 81 205104 (2010)
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Density operator perturbation theory

Rather than perturbing the wave function, can work with
the density operator:3:

ρ = ρρ→ ρ1 = ρ1ρ0 + ρ0ρ1 +O(2)

Using magnetic translation symmetry operation, all field
dependence has been transferred FROM the Hamiltonian
TO the density operator and we must perturb

ρr1,r2 = ρ̄r1,r2e
−iB·r1×r2/2c

3Lazzeri and Mauri, PRB 68 161101(R) (2003)
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A New Theory of Orbital Magnetic Susceptibility

Based on the the previous ideas Xavier Gonze and I have
developed a complete treatment of magnetic field response in a
periodic insulator. Key new ingredient:4

T̃k = ṼkW̃k

+

∞
∑

m=1

1

m!

(

i

2c

)m
(

m
∏

n=1

εαnβnγnBαn

)

×(∂β1
· · · ∂βm

Ṽk)(∂γ1 · · · ∂γmW̃k),

E (n) =

∫

BZ

dk

(2π)3
Tr[(ρ̃

(n)
kVV + ρ̃

(n)
kCC )H̄k].

4X. Gonze and J. W. Zwanziger, PRB 84, 64445 (2011)
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Development of ρ

Density operator perturbation theory is used:5

ρ̃
(1)
kD =

i

2c
εαβγBα(∂β ρ̃

(0)
k )(∂γ ρ̃

(0)
k ),

ρ̃
(2)
kD = ρ̃

(1)
k ρ̃

(1)
k quadratic

+
i

2c
εαβγBα[(∂β ρ̃

(0)
k )(∂γ ρ̃

(1)
k ) + (∂β ρ̃

(1)
k )(∂γ ρ̃

(0)
k )] linear

−
1

8c2

(

2
∏

n=1

εαnβnγn
Bαn

)

∂β1∂β2 ρ̃
(0)
k .∂γ1∂γ2 ρ̃

(0)
k frozen

Full ρ(n), including CV and VC parts, may be subsequently recovered

if needed.

5McWeeny Phys Rev 126, 1028 (1962); Lazzeri and Mauri, PRB 68

161101(R) (2003)
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Checking the Theory

The theory recovers the result for magnetization of
Essin et al., essentially E (1)

Second order, E (2), is a new, rigorous result for orbital
susceptibility

We then checked it with a tight binding model: analytical
versus numerical
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Checking the theory

A sites at corners, initially
occupied

B sites at centers, initially
empty

on-site energies: EA < EB

A− A couplings s; A− B

couplings t

B field applied
perpendicular to plane:

Hr1,r2 = H̄r1,r2e
−iB·r1×r2

 

E
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Example with t = 2.0. E (2)

computed from theory, and by
direct diagonalization
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Mixed Perturbations

In addition to the results for ρ(n) and E (n) due to
magnetic fields, we have also established the response to
mixed magnetic and other perturbations µ:

∂2E

∂µ∂B
=

∫

BZ

dk

(2π)3
Tr

[

ρ̃(1)
∂Hk

∂µ

]
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Summary

Modern theory of polarization and finite electric fields in
PAW formalism

Applications to linear and nonlinear electric susceptibility

Works with spin-orbit, spin-polarized, etc.

New theory of orbital magnetic susceptibility, extension to
mixed perturbations

Implementation in Abinit underway

MANY thanks to Xavier Gonze, Marc Torrent, Abinit

development and theory community
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