J. W. Zwanzigei

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields

Homogeneous Electric and Magnetic Fields in Periodic Systems

Josef W. Zwanziger

iDepartment of Chemistry and Institute for Research in Materials Dalhousie University Halifax, Nova Scotia

June 2012

(日) (圖) (E) (E) (E)

1/24

Acknowledgments

J. VV. Zwanzigei

- Computational Framework
- Homogeneous electric fields
- Homogeneous finite magnetic fields

■ NSERC, Canada Research Chairs for funding

Outline

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields

1 Computational Framework

2 Homogeneous electric fields

3 Homogeneous finite magnetic fields

Density functional theory

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields

Minimize

$$E_{\rm el}\{\psi\} = \sum_{\alpha}^{\rm occ} \langle \psi_{\alpha} | T + v_{\rm ext} | \psi_{\alpha} \rangle + E_{\rm Hxc}[n] - \sum_{\alpha\beta}^{\rm occ} \epsilon_{\beta\alpha} (\langle \psi_{\alpha} | \psi_{\beta} \rangle - \delta_{\alpha\beta})$$

where

$$n(\mathbf{r}) = \sum_{lpha}^{
m occ} \psi_{lpha}^*(\mathbf{r}) \psi_{eta}(\mathbf{r})$$

and gradient is $\delta E/\delta \langle \psi_{\alpha} |$

Planewaves and pseudopotentials

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields Periodicity of the solid leads to Bloch theorem:

 $\psi_{n\mathbf{k}}(\mathbf{r}) \propto e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$

and the cell periodic part is expanded in planewaves:

$$u_{n\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} u_{n\mathbf{k}}(\mathbf{G}) e^{i\mathbf{G}\cdot\mathbf{r}}$$

This is efficient *if* the core electrons are replaced by pseudopotentials.

・ロト ・御 ト ・ ヨト ・ ヨト … ヨー

Projector Augmented Wave Method

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields The PAW method (Blöchl) *projects* from pseudofunctions back to all-electron valence space functions.

$$\begin{aligned} |\psi\rangle &= T |\tilde{\psi}\rangle \\ T &= 1 + \sum_{i,\mathbf{R}} \left[|\phi_{i\mathbf{R}}\rangle - |\tilde{\phi}_{i\mathbf{R}}\rangle \right] \langle \tilde{p}_{i\mathbf{R}}| \\ \langle \psi | A | \psi \rangle &= \langle \tilde{\psi} | A | \tilde{\psi} \rangle + \sum_{ij,\mathbf{R}} \langle \tilde{\psi} | \tilde{p}_{i\mathbf{R}} \rangle \langle \tilde{p}_{j\mathbf{R}} | \tilde{\psi} \rangle \times \\ \left(\langle \phi_{i\mathbf{R}} | A | \phi_{j\mathbf{R}} \rangle - \langle \tilde{\phi}_{i\mathbf{R}} | A | \tilde{\phi}_{j\mathbf{R}} \rangle \right) \end{aligned}$$

<ロ > < 部 > < 言 > < 言 > 言) へ () 6/24

Homogeneous electric field

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields

 $V(\mathbf{R}+\mathbf{r})=V(\mathbf{r})$

- $V(\mathbf{r}) + e\mathbf{E}\cdot\mathbf{r}$
- "Obvious" coupling between external electric field E and electric charge leads to energy term eE · r
- This term is OK for finite systems but not for infinite systems!
- Appear to have lost all bound states!

Modern Theory of Polarization

J. W. Zwanzigei

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields King-Smith and Vanderbilt showed that polarization does not suffer from unboundedness:

$${f P}=-rac{ie}{(2\pi)^3}\sum_n\int_{
m BZ}d{f k}\langle u_{nf k}|
abla_{f k}|u_{nf k}
angle$$

Nunes and Gonze showed how polarization enters into a well-posed minimization scheme with finite electric field:

$$\mathsf{E}[\psi,\mathsf{E}]=\mathsf{E}[\psi]-\Omega\mathsf{E}\cdot\mathsf{P}(\psi)$$

Inclusion of a Finite Electric Field

J. W. Zwanzigei

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields Minimize $E = E_0 - \mathbf{P} \cdot \mathbf{E}$, where:

- **P** is computed via PAW transform and discretization¹
- Generalized norm constraint is imposed: $\langle \psi_n | S | \psi_m \rangle = \delta_{nm}$
- On-site dipole contribution from *T* is included:

$$\langle \tilde{u}_{n\mathbf{k}} | T_{\mathbf{k}}^{\dagger} i \nabla_{\mathbf{k}} T_{\mathbf{k}} | \tilde{u}_{n\mathbf{k}} \rangle,$$

$$|arphi_{q,\mathbf{R},\mathbf{k}}^{\prime}
angle=\mathrm{e}^{-i\mathbf{k}\cdot(\mathbf{r}-\mathbf{R})}|arphi_{q,\mathbf{k}}^{\prime}
angle$$

Form gradient:

$$\delta E / \delta \langle u_{m\mathbf{k}} | = \delta E_0 / \delta \langle u_{m\mathbf{k}} | - \mathbf{E} \cdot \delta \mathbf{P} / \delta \langle u_{m\mathbf{k}} |$$

Implemented in ABINIT, including spin polarized systems, spinors, spin-orbit coupling

¹King-Smith and Vanderbilt, *cond-matt*; Zwanziger *et al.*, *Comp. Mater. Sci.* **58**, 113 (2012)

9/24

Convergence with k-mesh

Homogeneous electric fields

Inverse k mesh/Bohr

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Convergence with mesh size for Si

10/24

э

Applications

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields Polarization is computed as a function of applied field and fit to the form (SI units for polarization and field):

$$P_i = \epsilon_0 \chi_{ij}^{(1)} E_j + 2\epsilon_0 d_{ijk} E_j E_k,$$

Applications

J. W. Zwanziger

Homogeneous electric fields High and low frequency susceptibility: \(\chi_{\alpha\beta} = dP_\alpha/dE_\beta\)
Second order susceptibilities

Compound	ϵ^{0}	ϵ^{∞}	$d_{123} \text{ pm/V}$
AIP (LDA)	10.26	8.01	21.5
(PBE)	10.09	7.84	23.2
(expt)	9.8	7.5	
AlAs (LDA)	11.05	8.75	32.7
(PBE)	10.89	8.80	38.8
(expt)	10.16	8.16	32
AISb (LDA)	12.54	11.17	98.3
(PBE)	12.83	11.45	103
(PBE + SO)		9.76	
(expt)	11.68	9.88	98

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Application: MgO Dielectric

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields

Method	ϵ^{∞}		
PAW E-field, PBE	3.089		
PAW DFPT, LDA	3.057		
NCPP DFPT, LDA	3.063		
Expt	3.014		
N.B. in DFPT, $\frac{\partial^2 E}{\partial E_i \partial E_j}$	is		
computed directly, without			
presence of a field			

Photoelasticity

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields Inverse of dielectric tensor changed by stress or strain:

$$\Delta B_{ij} = p_{ijkl} \epsilon_{kl} = \pi_{ijkl} \sigma_{kl}$$

Compound	e	P11	P21	P44
Si (LDA)	12.4	-0.106	0.015	-0.052
(PBE)	12.2	-0.112	0.010	-0.061
(expt)	11.7	-0.094	0.017	-0.051
C (LDA)	5.71	-0.263	0.0673	-0.160
(PBE)	5.79	-0.268	0.0643	-0.171
(expt)	5.65-5.7	-0.2440.42	0.042-0.27	-0.1720.162

Photoelasticity in oxides

Homogeneous electric fields

Quantity	MgO	BaO	SnO
C ₁₁	325.8	158.3	111.7
C ₃₃			43.4
C ₁₂	98.8	46.8	95.0
C ₁₃			18.9
C44	162.5	35.7	30.4
C ₆₆			85.2
π_{11}	-0.980	0.990	-1.70
π_{33}			0.91
π_{12}	0.172	-0.176	2.19
π_{13}		6 6.20	
π_{44}	-0.446	-1.26	2.31
π_{66}			0.97
ϵ_{11}^{∞}	3.04	4.27	8.67
ϵ_{33}^{∞}			7.04

- (SnO)₆₀(P₂O₅)₄₀: C = -0.6 B ■ (SnO)₆₆(P₂O₅)₃₄: C = -1.3 B
- (SnO)₇₅(P₂O₅)₂₅: C = -2.3 B

Homogeneous magnetic fields in insulators

J. VV. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields

- One approach to magnetic fields in periodic insulators is the long wavelength approach of Louie and co-workers:
 B → B cos(q · r) with q → 0.
- Problematic: cannot always find $|\partial_{\mathbf{k}}u\rangle$ such that $\langle \partial_{\mathbf{k}}u|u_{\mathbf{k}}^{0}\rangle = 0$ AND $|u_{\mathbf{k}+\mathbf{G}}^{0}\rangle = e^{i\mathbf{G}\cdot\mathbf{r}}|u_{\mathbf{k}}^{0}\rangle$.
- In 2005 and 2006, Ceresoli, Thonhauser, Resta, and Vanderbilt established:

$$\mathbf{M} = \frac{1}{2c(2\pi)^{3}} \operatorname{Im} \sum_{nn'} \int_{BZ} d\mathbf{k} \langle \partial_{\mathbf{k}} u_{n'\mathbf{k}} | \times (H_{\mathbf{k}} \delta_{nn'} + E_{nn'\mathbf{k}}) | \partial_{\mathbf{k}} u_{n\mathbf{k}} \rangle$$
$$\mathbf{C} = \frac{i}{2\pi} \sum_{n} \int_{BZ} d\mathbf{k} \langle \partial_{\mathbf{k}} u_{n\mathbf{k}} | \times | \partial_{\mathbf{k}} u_{n\mathbf{k}} \rangle$$

Magnetic Translation Symmetry

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields Recall gauge-dependent Hamiltonian:

$$H = \frac{1}{2}(\mathbf{p} + \frac{1}{c}\mathbf{A})^2 + V$$

In 2010, Essin et al.² (see also Brown, Zak) discussed magnetic translation symmetry:

$$O_{\mathbf{r}_1,\mathbf{r}_2} = \bar{O}_{\mathbf{r}_1,\mathbf{r}_2} e^{-i\mathbf{B}\cdot\mathbf{r}_1\times\mathbf{r}_2/2c}$$

where \bar{O} has lattice symmetry.

²PRB **81** 205104 (2010)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Density operator perturbation theory

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields Rather than perturbing the wave function, can work with the density operator:³:

$$\rho = \rho \rho \rightarrow \rho^1 = \rho^1 \rho^0 + \rho^0 \rho^1 + \mathcal{O}(2)$$

 Using magnetic translation symmetry operation, all field dependence has been transferred FROM the Hamiltonian TO the density operator and we must perturb

$$\rho_{\mathbf{r}_1,\mathbf{r}_2} = \bar{\rho}_{\mathbf{r}_1,\mathbf{r}_2} e^{-i\mathbf{B}\cdot\mathbf{r}_1\times\mathbf{r}_2/2c}$$

A New Theory of Orbital Magnetic Susceptibility

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields Based on the the previous ideas Xavier Gonze and I have developed a complete treatment of magnetic field response in a periodic insulator. Key new ingredient:⁴

$$\begin{split} \tilde{T}_{\mathbf{k}} &= \tilde{V}_{\mathbf{k}} \tilde{W}_{\mathbf{k}} \\ &+ \sum_{m=1}^{\infty} \frac{1}{m!} \left(\frac{i}{2c}\right)^{m} \left(\prod_{n=1}^{m} \varepsilon_{\alpha_{n}\beta_{n}\gamma_{n}} B_{\alpha_{n}}\right) \\ &\times (\partial_{\beta_{1}} \cdots \partial_{\beta_{m}} \tilde{V}_{\mathbf{k}}) (\partial_{\gamma_{1}} \cdots \partial_{\gamma_{m}} \tilde{W}_{\mathbf{k}}), \\ E^{(n)} &= \int_{\mathrm{BZ}} \frac{d\mathbf{k}}{(2\pi)^{3}} \mathrm{Tr}[(\tilde{\rho}_{\mathbf{k}VV}^{(n)} + \tilde{\rho}_{\mathbf{k}CC}^{(n)}) \bar{H}_{\mathbf{k}}]. \end{split}$$

⁴X. Gonze and J. W. Zwanziger, PRB 84, 64445 (2011) . (2)

19/24

Development of ρ

J. W. Zwanziger

Homogeneous finite magnetic fields Density operator perturbation theory is used:⁵

$$\begin{split} \tilde{\rho}_{\mathbf{k}D}^{(1)} &= \frac{i}{2c} \varepsilon_{\alpha\beta\gamma} B_{\alpha}(\partial_{\beta} \tilde{\rho}_{\mathbf{k}}^{(0)}) (\partial_{\gamma} \tilde{\rho}_{\mathbf{k}}^{(0)}), \\ \tilde{\rho}_{\mathbf{k}D}^{(2)} &= \tilde{\rho}_{\mathbf{k}}^{(1)} \tilde{\rho}_{\mathbf{k}}^{(1)} \quad \text{quadratic} \\ &+ \frac{i}{2c} \varepsilon_{\alpha\beta\gamma} B_{\alpha} [(\partial_{\beta} \tilde{\rho}_{\mathbf{k}}^{(0)}) (\partial_{\gamma} \tilde{\rho}_{\mathbf{k}}^{(1)}) + (\partial_{\beta} \tilde{\rho}_{\mathbf{k}}^{(1)}) (\partial_{\gamma} \tilde{\rho}_{\mathbf{k}}^{(0)})] \quad \text{linear} \\ &- \frac{1}{8c^{2}} \left(\prod_{n=1}^{2} \varepsilon_{\alpha_{n}\beta_{n}\gamma_{n}} B_{\alpha_{n}} \right) \partial_{\beta_{1}} \partial_{\beta_{2}} \tilde{\rho}_{\mathbf{k}}^{(0)} . \partial_{\gamma_{1}} \partial_{\gamma_{2}} \tilde{\rho}_{\mathbf{k}}^{(0)} \quad \text{frozen} \end{split}$$

Full $\rho^{(n)}$, including CV and VC parts, may be subsequently recovered if needed.

⁵McWeeny *Phys Rev* **126**, 1028 (1962); Lazzeri and Mauri, *PRB* **68** 161101(R) (2003)

Checking the Theory

J. W. Zwanziger

- Computational Framework
- Homogeneous electric fields
- Homogeneous finite magnetic fields
- The theory recovers the result for magnetization of Essin *et al.*, essentially E⁽¹⁾
- Second order, E⁽²⁾, is a new, rigorous result for orbital susceptibility
- We then checked it with a tight binding model: analytical versus numerical

Checking the theory

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields

- A sites at corners, initially occupied
- B sites at centers, initially empty
- on-site energies: $E_A < E_B$
- A − A couplings s; A − B couplings t
- B field applied perpendicular to plane:

$$\mathit{H}_{\mathbf{r_1},\mathbf{r_2}} = \bar{\mathit{H}}_{\mathbf{r_1},\mathbf{r_2}} e^{-i\mathbf{B}\cdot\mathbf{r_1}\times\mathbf{r_2}}$$

0.005 0.005 0.005 0.005 0.005 0.005 0.01 0.015 0.025 0.005 0.01 0.015 0.02 0.015 0.01 0.0150.2

Example with t = 2.0. $E^{(2)}$ computed from theory, and by direct diagonalization

Mixed Perturbations

J. vv. Zwanzige

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields In addition to the results for ρ⁽ⁿ⁾ and E⁽ⁿ⁾ due to magnetic fields, we have also established the response to mixed magnetic and other perturbations μ:

$$\frac{\partial^2 E}{\partial \mu \partial B} = \int_{\mathrm{BZ}} \frac{d\mathbf{k}}{(2\pi)^3} \mathrm{Tr} \left[\tilde{\rho}^{(1)} \frac{\partial H_{\mathbf{k}}}{\partial \mu} \right]$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

23 / 24

Summary

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

Homogeneous finite magnetic fields

- Modern theory of polarization and finite electric fields in PAW formalism
- Applications to linear and nonlinear electric susceptibility
- Works with spin-orbit, spin-polarized, etc.
- New theory of orbital magnetic susceptibility, extension to mixed perturbations
- Implementation in ABINIT underway
- MANY thanks to Xavier Gonze, Marc Torrent, ABINIT development and theory community