Dirac semimetal in three dimensions

Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania

Dirac points in Graphene

Without spin-orbit coupling

- At the Fermi level, two bands intersect at *K* and *K*'
- Dirac points in 2D; opposite chirality
- Dirac Hamiltonian:

$$\hat{H}_{\text{eff}}(\mathbf{k}) = v \left(k_x \sigma_x + k_y \sigma_y \right)$$

• σ_i are the Pauli matrices that describe electron pseudospin

What kind of perturbations will split these point-like two-fold degeneracies? 2D Dirac points lead to 2D topological phases $\hat{H}_{\text{eff}}(\mathbf{k}) = v \left(k_x \sigma_x + k_y \sigma_y\right)$

- Dirac Points in 2D are not robust
- Perturbations $\hat{H}' \propto \sigma_z$ split the Dirac points in graphene
- Haldane¹:*T*-breaking $\hat{H}' \propto \sigma_z$ gaps the system into a quantum Hall insulator
- Including spin brings an additional index (Pauli matrices τ_i)
- With spin, Dirac point has *four* degenerate states
- Must also include spin-orbit effects
- Kane & Mele²: spin-orbit $\propto \sigma_z \tau_z$ gaps the system into a topological insulator
- C atom is light so spin-orbit is negligible
- Effectively, four bands are point-like degenerate at *K* and *K*'

1. Haldane, F. D. M. Phys. Rev. Lett. **61**, 2015-2018 (1988).

2. Kane, C.L. and Mele, E.J. Phys. Rev. Lett. **95**, 226801 (2005).

What about 3D?

- In 3D, the analogous 2-band Hamiltonian will be $\hat{H}_{\rm eff}({f k}) = v \left(k_x \sigma_x + k_y \sigma_y + k_z \sigma_z\right)$
- 2-component spinor with this \hat{H}_{eff} is called a Weyl fermion
- \hat{H}_{eff} uses all 3 σ_i so Weyl points are robust against perturbations

Does the Weyl Hamiltonian have any topological content?

Chern number of Weyl point

• Indeed, the first Chern number of the Weyl Hamiltonian is ±1

• The first Chern number of a point **k** is given by

$$n = \frac{1}{2\pi i} \int_{\partial S} d\mathbf{a} \cdot \nabla \times \langle \psi_v(\mathbf{k}) | \nabla | \psi_v(\mathbf{k}) \rangle$$
$$= \frac{1}{\pi} \int_{\partial S} d\theta d\phi \, \operatorname{Im} \langle \partial_\theta \psi_v(\mathbf{k}) | \partial_\phi \psi_v(\mathbf{k}) \rangle$$

$$\begin{aligned} & 3\mathsf{D} \operatorname{Weyl points} \\ & n = \frac{1}{2\pi i} \int_{\partial S} d\mathbf{a} \cdot \nabla \times \langle \psi_v(\mathbf{k}) | \nabla | \psi_v(\mathbf{k}) \rangle \\ & = \frac{1}{\pi} \int_{\partial S} d\theta d\phi \operatorname{Im} \langle \partial_\theta \psi_v(\mathbf{k}) | \partial_\phi \psi_v(\mathbf{k}) \rangle \end{aligned}$$

- Under k to -k (such as inversion or time reversal), the orientation of *da* reverses as does ∇.
- Under inversion, Chern number at **k**, $n_{\mathbf{k}} = -n_{\mathbf{k}}$
- But time reversal is antiunitary $(i \rightarrow -i)$, so $n_k = +n_{-k}$

Under both time reversal and inversion, there must be two Weyl points at **k** with opposite Chern number and two more at **-k**

3D Dirac points

 When two Weyl points with opposite Chern number are on top of each other, the Ĥ_{eff} will be a 4 × 4 matrix linear in momentum k

$$\hat{H}_{\text{eff}}(\mathbf{k}) = v \left(k_x \gamma_x + k_y \gamma_y + k_z \gamma_z \right)$$

- γ_i are 4 × 4 Dirac matrices
- \hat{H}_{eff} is called Dirac Hamiltonian
- Total Chern number of a Dirac point is 0

Therefore 3D Dirac points are *not* robust. Can perturb Dirac point to access insulators!

Weyl vs. Dirac semimetals

- Weyl semimetal: point-like degeneracy at the Fermi level between *one* conduction and *one* valence band $\hat{H}_{eff}(\mathbf{k}) = v \left(k_x \sigma_x + k_y \sigma_y + k_z \sigma_z\right)$
- Dirac semimetal: pointlike degeneracy at the Fermi level between *two* conduction and *two* valence bands

$$\hat{H}_{\text{eff}}(\mathbf{k}) = v \left(k_x \gamma_x + k_y \gamma_y + k_z \gamma_z \right)$$

• In both cases, the bands disperse linearly in all directions in **k**

One way to realize Dirac/Weyl semimetals

- The intermediate phase between a topological and a normal insulator is a Dirac/ Weyl semimetal¹
- Breaking inversion or time reversal splits a Dirac point into Weyl points²
- Right before gap opening, Weyl points come together to form a Dirac point
- To realize a Weyl semimetal in 3D, one must start with a parent Dirac semimetal!

Topological to Normal Insulator transition

Such Dirac points are topologically protected but not necessarily symmetry protected

1. Murakami, S. New Journ. of Phys. 9, 356 (2007).

2. Burkov, A.A. and Balents, L. Phys. Rev. Lett. **107**(12), 127205 (2011). 6/7/12 • 9

Recent work on Weyl semimetals

- *"Topological nodal semimetals"* Burkov, Hook and Balents, PRB 84, 235126 (2011).
- "Charge Transport in Weyl Semimetals" Hosur, Parameswaran and Vishwanath, PRL 108, 046602 (2012).
- "Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates" Wan, Turner, Vishwanath, Savrasov, PRB 83, 205101 (2011).
- "Quantum Hall effects in a Weyl Semi-Metal: possible application in pyrochlore Iridates"
 Yang, Lu, Ran PRB 84, 075129 (2011).
- *"Double-Weyl Topological Metals Stabilized by Point Group Symmetry"* Fang, Gilbert, Dai, Bernevig, arXiv:1111.7309v1 (2011)

Dirac point in Bi₂Se₃ TI/NI phase transition

The valence and conduction energy bands of Bi_2Se_3 in the (111) plane during the phase transition from topological insulator to conventional insulator. With increasing strain the topological band gap closes, forming a Dirac point, and then reopens as conventional band gap.

Young S. M. et al. Phys. Rev. B 84, 085106 (2011). 6/7/12 • 11

3D Dirac semimetals

- There are proposals for a TI/ NI multilayer heterostructure which realizes a phase transition between a normal and a topological insulator
- With either inversion or time reversal symmetry breaking, a range of parameters realizes Weyl points^{1,2}
- In general, topological phase transitions are hard to engineer

Topological to Normal Insulator transition

Main point of talk: Is it possible to prevent two Weyl points of opposite Chern number from annihilating due to the presence of (another) crystallographic symmetry? Yes!

1. Burkov, A.A. and Balents, L. Phys. Rev. Lett. **107**(12), 127205 (2011).

2. Halász, G.B. and Balents, L. arXiv:1109.6137[cond-mat.mes-hall] (2011). 6/7/12 • 12

s-states on a diamond lattice

- Tight-binding model of *s*-states on the diamond lattice (Fu, Kane, and Mele)¹
- The point *X* in the Brillouin zone, realizes a symmetry-protected Dirac point
- Why space group 227?
- Why the *X* point?
- Is there a realistic material that can have a Dirac point at the Fermi level?

Finding 3D Dirac points

- Which space groups: crystallographic symmetry
- Which k-points: projective representations of little groups
- Presence at Fermi level: chemical and electronic

Dirac point: search criteria

- A Dirac point has *four* degenerate eigenstates: must find double space groups with four-dimensional irreducible representations: 4DIR
- Each band disperses linearly in **k** around the Dirac point: must ensure nonzero linear coeffs
- Want Dirac point(s) as only Fermi surface: the total Chern number of the *two* occupied states must be zero
- Dirac points can also exist accidentally as in the TI/NI transition; our methods cannot identify accidentally occurring Dirac points

First test: Chern number=0

- The Chern number can be determined up to an integer when a rotation symmetry is present
- If a Dirac point is protected by 3-fold rotation symmetry, its Chern number cannot be made to vanish
- For 2-fold and 4-fold rotation symmetry, the Chern number can be made to vanish
- This rules out all 4DIRs that arise in groups containing 3-fold rotation symmetry

Calculating Chern number

- In the presence of an *n*-fold rotation symmetry, the Chern number mod *n* at a point **k** can be determined using rotation eigenvalues of filled states at the fixed points
- The difference of eigenvalues from one pole to the other signals the presence of a singularity inside ∂*S*
- A point-like crossing of bands is exactly that singularity!
- This singularity is quantified by the Chern number which gives the winding around dS of the gauge transformation required to match states at the two poles

Chern no. $= (p-q) \mod n$

- A 4DIR is spanned by $p^{3/2}$ states, also denoted ${}^2P_{3/2}$
- Along a 3-fold rotation axis, such a 4DIR has 4 eigenvalues shown above
- The Chern numbers of the 2 filled bands do not sum to zero!

For symmorphic space groups: even if they have a 4DIR at a **k**-point, if there is a 3-fold axis in the little group at that point, there cannot be a symmetry-protected Dirac point there!

Why focus on 3-fold rotations?

- In all the symmorphic space groups (73 out of 230), 4DIRs occur at points k which have cubic symmetry
- All cubic point groups (5 of 32 total) have three-fold rotations!
- The rest of the 27 point groups do not carry four dimensional representations
- Linearly dispersing bands along axes of *n*-fold rotations for *n* = 2, 4 can adjust so that the Chern number vanishes

Is it possible to find 4DIRs for groups without three-fold symmetry?

Second test: 4 dimensional representations

- Non-symmorphic (double) space groups (157 out of 230) can carry 4DIRs even though most of them lack three-fold symmetry
- What are non-symmorphic space-groups? Those that have screw axis or glide plane—operations that combine a point group operation with a non-primitive lattice translation
- Examples
- a) DNA
- b) Diamond lattice (2 interpenetrating FCC lattices)

Non-symmorphic symmetry operations

- Rotation of the helix is not a symmetry
- To return the helix to its original configuration, we need to translate the lattice by a small vector t which is not a multiple of any of the lattice vectors
- Therefore the symmetry operator is {*R* | **t**}: rotation followed by translation **t**...a "screw axis".

What happens in the Brillouin zone?

• A non-symmorphic symmetry operation carries translation in *real space*. In reciprocal space, the point group operation carries a phase factor, not translation.

Representations of nonsymmorphic operations I

- Even though a non-symmorphic operation like {m | t} in graphene acts like a point group operation in the Brillouin zone, its representation for a non-symmorphic lattice is different from a symmorphic lattice
- Recall that any translation {*E* | **t**} of the crystal implements a phase *e*^{-ik·t} on bloch states Ψ_k
- Therefore non-symmorphic operations like {*m* | **t**} act as *e*^{-ik·t}*U*_k(*m*), where *U*_k(*m*) is a unitary operator that implements the mirror operation

Representations of nonsymmorphic operations II

- Recall how space-group operations multiply: $\{R_1 | \mathbf{t}_1\} \{R_2 | \mathbf{t}_2\} = \{R_1 R_2 | \mathbf{t}_1 + R_1 \mathbf{t}_2\}$
- The representatives follow as, $e^{-i\mathbf{k}\cdot\mathbf{t_1}}U_{\mathbf{k}}(R_1)e^{-i\mathbf{k}\cdot\mathbf{t_2}}U_{\mathbf{k}}(R_2)e^{-i\mathbf{k}\cdot(\mathbf{t_1}+R_1\mathbf{t_2})}U_{\mathbf{k}}(R_1R_2)$ $U_{\mathbf{k}}(R_1)U_{\mathbf{k}}(R_2) = e^{-i(R_1^{-1}\mathbf{k}-\mathbf{k})\cdot\mathbf{t_2}}U_{\mathbf{k}}(R_1R_2)$
- If k is an internal point of the Brillouin zone, R₁⁻¹k = k since all the {R | t} under consideration belong to the little space group at k
- If k is on the surface of the Brillouin zone, R₁⁻¹k = k + g_i where g_i is a reciprocal lattice vector:

$$U_{\mathbf{k}}(R_1)U_{\mathbf{k}}(R_2) = e^{-i\mathbf{g}_i \cdot \mathbf{t_2}}U_{\mathbf{k}}(R_1R_2)$$

Representations of nonsymmorphic operations III

The matrices U_k form a representation of the point group consisting of all rotations R_i with the following multiplication rule:

$$U_{\mathbf{k}}(R_1)U_{\mathbf{k}}(R_2) = e^{-i\mathbf{g}_i \cdot \mathbf{t_2}}U_{\mathbf{k}}(R_1R_2)$$

- The phase exp(-*i*g_{*i*}.t₂) = 1 if and only if either g_{*i*} = 0, or t₂ is a real-space lattice vector
- For non-symmorphic operations, t_2 is non-primitive, so the unitary matrices U_k form a projective representation with some lattice-specific factor system
- Projective representations of point groups without 3-fold rotation symmetry can be 4DIRs
- In 3D crystals, all candidate Dirac points belong to a projective representation of one of the 32 crystal point groups

Ref: Bradley, C.J. and Cracknell, A.P. The Mathematical Theory of Symmetry in Solids (Oxford, 1972).

Third test: Splitting of the representation

- We can use k·p perturbation theory to determine whether the effective Hamiltonian at a 4DIR has linear dispersion in all directions
- For a general spin-orbit coupled system, the Schrodinger equation reads,

$$\left[\frac{\mathbf{p}^2}{2m} + V + \frac{\hbar}{4m^2c^2}(\nabla V \times \mathbf{p}).\sigma\right]\psi_{\mathbf{k}} = E_{\mathbf{k}}\psi_{\mathbf{k}} \text{ where } \psi_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}.\mathbf{r}}$$

$$\left[\frac{\mathbf{p}^2 + 2\hbar\mathbf{k}\cdot\mathbf{p}}{2m} + V + \frac{\hbar}{4m^2c^2}\nabla V \times (\mathbf{p} + \hbar\mathbf{k}).\sigma\right]u_{\mathbf{k}} = \left(E_{\mathbf{k}} - \frac{\hbar^2k^2}{2m}\right)u_{\mathbf{k}}$$

k.p perturbation theory I

- Suppose there is a four dimensional representation at X
- At X+k the Schrodinger equation for u_{X+k} gets modified accordingly
- E_{X+k} can be written as

$$\mathbf{k} \to X + \mathbf{k} \quad E_{X+\mathbf{k}} = E_X + \langle \psi_X | \hat{H}' | \psi_X \rangle + \dots$$

where $\hat{H}' = \hbar \mathbf{k} \cdot \left(\frac{\mathbf{p}}{m} + \frac{\hbar}{4m^2c^2} \sigma \times \nabla V \right) = \mathbf{k} \cdot \mathbf{R}$

• If all $\langle \psi_X^i | \mathbf{R} | \psi_X^j \rangle$ are identically zero, none of the bands degenerate at X can disperse linearly in **k** in its vicinity

k.p perturbation theory II

- Ψ_X^{i} span the four dimensional representation Γ at X
- **R** is a vector, so it belongs to the vector representation Γ^{V} of the little space-group at X
- If $\Gamma \times \Gamma^{V} \times \Gamma$ contains the identity representation of the group, some of the matrix elements $\langle \psi_{X}^{i} | \mathbf{R} | \psi_{X}^{j} \rangle$ are guaranteed to be non-vanishing
- Alternatively, we can check if the symmetric kronecker product $[\Gamma \times \Gamma]$ contains the vector representation Γ^{V}

Splitting of the representation

• What are the possible ways in which a four dimensional can split up to linear order in **k**

- Symmetry determines how the 4-fold degeneracy splits:
- a) 2+2 dimensional representations
- b) 1+1+1+1 dimensional representations
- c) 1+2+1 dimensional representations
- d) 1+2+1 dimensional representations with identical energy spectra on both sides

Summary of the criteria

- Is there a point k in the Brillouin zone such that its little space group carries a four dimensional irreducible representation (4DIR) Γ?
- Does Γ carry a Chern number of zero?
- Does the symmetric kronecker product [Γ × Γ] contain the vector representation of the little space group at k?
- How does Γ split along high-symmetry lines away from k? In a way that avoids zero slope?
- If the answer to all of these questions is yes, then **k** is a candidate for hosting a Dirac point

This leaves about two dozen "good" candidate space groups

Beyond Symmetry

- Symmetry guarantees:
 - oFour-fold degeneracy
 - Linear dispersion in neighborhood of high symmetry point
- Does not answer:

oIs the degeneracy at the Fermi level?

oIs it the only Fermi surface?

oDoes the linearity persist over a useful energy range?

These are questions that chemistry must answer!

Example: Space Group 227

• We already know that a diamond lattice of *s*-orbitals will give us a Dirac point at *X*

Example: Space Group 227

- Put s₁ species on diamond lattice
- Results:

Too much Fermi surface
Dirac point is overwhelmed

Almost certainly un-makeable

β-Cristobalite

- High temperature form of SiO₂
- Si on a diamond lattice with O bridging the bonds
- p-orbitals of O belong to correct rep!

β-Cristobalite

- Degeneracy not at Fermi energy
- Along the X-W line, bands nearly degenerate

 Single group representation is doubly degenerate along X-W

Substitutions for Si:

- Can we split the bands better?
 OHeavier atoms for more spin orbit coupling
- Can we move the Fermi level?

 Atoms with different numbers of valence electrons and different energy ordering

- Fermi surface at Dirac point
- Wide energy range where linear
- Meta-stable!

BiO₂

- The 4DIR at X is the only allowed double-valued representation at X
- Why aren't there more Dirac-like crossings in the band structure
- There actually are, but they are of low quality

Why is the one at the Fermi energy so good?

BiO₂

• The bands of the Dirac point are composed of Bi s and O p states, with splitting into bonding- and antibonding-like states.

Counter Example: Laves Structure

- Belongs to 227, but structure is more closely packed
- No distinct bonding states arise
- Structure is metallic; band structure is messy

Conclusions

- Identified symmetry criteria to look for candidate space-groups that will allow 3D Dirac points
- Identified chemical and physical criteria required to elevate said Dirac points to the Fermi level
- Proposed a realistic metastable material that realizes three symmetry protected Dirac points at the BZ

Acknowledgements

- MRSEC program NSF grant no. DMR11-20901 (S.M.Y.)
- DOE grant no. FG02-ER45118 (E. J. M. and S. Z.)
- NSF grant no. DMR11-24696 (A. M. R.)
- NSF grant no. DMR09-06175 (C. L. K. and J. C. Y. T.).
- Computational support from the High Performance Computing Modernization Office.