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Dirac points in Graphene

S

Without spin-orbit coupling

o At the Fermi level, two bands intersect at K and K’
* Dirac points in 2D; opposite chirality

* Dirac Hamiltonian:

Heg(k) = v (kyoy + kyoy)
* 0,are the Pauli matrices that describe electron pseudospin

What kind of perturbations will split

these point-like two-fold degeneracies? -



2D Dirac points lead to 2D
topological phases
Heg (k) = v (kpoy + kyoy)

Dirac Points in 2D are not robust
Perturbations H’ o< ¢, split the Dirac points in graphene
Haldane!:T-breaking H’ <0, gaps the system into a quantum Hall insulator

Including spin brings an additional index (Pauli matrices T;)

With spin, Dirac point has four degenerate states

Must also include spin-orbit effects

Kane & Mele?: spin-orbit < 0,1, gaps the system into a topological insulator
C atom is light so spin-orbit is negligible

Effectively, four bands are point-like degenerate at K and K’

1. Haldane, F. D. M. Phys. Rev. Lett. 61, 2015-2018 (1988).

2. Kane, C.L. and Mele, E.J. Phys. Rev. Lett. 95, 226801 (2005). S/7/ 188



What about 3D?

In 3D, the analogous 2-band Hamiltonian will be

Heg (k) = v (kyor + kyo, + k,0,)

2-component spinor with this H_ is called a Weyl
fermion

H_ uses all 3 0, so Weyl points are robust against
perturbations

Does the Weyl Hamiltonian
have any topological content?
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Chern number of Weyl point

 Indeed, the first Chern number of the Weyl
Hamiltonian is +1

0S
.
k

* The first Chern number of a point k is given by

n— QL da -V x (1, (K)| V]t (K))
Tl JoS

_ ! / dOdg Tm (g, (K)|0stby (K))
oS

7

nk=i1

6/7/12 @5



3D Weyl points

n—=— da -V X <¢fu( |V|wv \

27T’L XS

— % / dfd¢ Im(0p1), (K)|0pthy (k))
0S

k

* Under k to —k (such as inversion or time reversal), the
orientation of da reverses as does V.

* Under inversion, Chern number at k, n, =—#n_

* But time reversal is antiunitary (i—-i), so n; = +n

Under both time reversal and inversion, there
must be two Weyl points at k with opposite

Chern number and two more at -k
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3D Dirac points

* When two Weyl points with opposite
Chern number are on top of each other,
the H_, will be a 4 x 4 matrix linear in
momentum k

I:Ie (k) = v (kzve + Ky vy + k.7v:)

* v;are 4 x4 Dirac matrices
« H_is called Dirac Hamiltonian
* Total Chern number of a Dirac point is 0

Therefore 3D Dirac points are not robust.
Can perturb Dirac point to access insulators!
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Weyl vs. Dirac semimetals

Weyl semimetal: point-like degeneracy at the Fermi level
between one conduction and one valence band

ﬁeff(k) = v (kyoy + kyoy + k,0,)

Dirac semimetal: pointlike degeneracy at the Fermi level
between two conduction and two valence bands

I:[e (k) — U (ka:%: -+ ky”Yy - kz”YZ)

In both cases, the bands disperse linearly in all directions in k
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One way to realize
Dirac/Weyl semimetals

The intermediate phase between a
topological and a normal insulator is a
Dirac/ Weyl semimetal!

Breaking inversion or time reversal splits a
Dirac point into Weyl points?

Right before gap opening, Weyl points
come together to form a Dirac point

To realize a Weyl semimetal in 3D, one
must start with a parent Dirac semimetal!

Bandgap

With Inversion  Without Inversion

Parameter (1)

Topological to Normal Insulator transition

Such Dirac points are topologically protected but
not necessarily symmetry protected

1. Murakami, S. New Journ. of Phys. 9, 356 (2007).
2. Burkov, A.A. and Balents, L. Phys. Rev. Lett. 107(12), 127205 (2011). ¢///12©9



Recent work on Weyl
semimetals

"Topological nodal semimetals”
Burkov, Hook and Balents, PRB 84, 235126 (2011).

"Charge Transport in Weyl Semimetals”
Hosur, Parameswaran and Vishwanath, PRL 108, 046602 (2012).

"Topological semimetal and Fermi-arc surface states in the electronic

structure of pyrochlore iridates”
Wan, Turner, Vishwanath, Savrasov, PRB 83, 205101 (2011).

"Quantum Hall effects in a Weyl Semi-Metal: possible application in
pyrochlore Iridates”
Yang, Lu, Ran PRB 84, 075129 (2011).

"Double-Weyl Topological Metals Stabilized by Point Group Symmetry”
Fang, Gilbert, Dai, Bernevig, arXiv:1111.7309v1 (2011)
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Dirac point in Bi,Se; TI/NI
phase transition

Increasing Tensile Strain

The valence and conduction energy bands of Bi,Se; in the (111) plane during the phase transition from
topological insulator to conventional insulator. With increasing strain the topological band gap closes,
forming a Dirac point, and then reopens as conventional band gap.

Young S. M. et al. Phys. Rev. B 84, 085106 (2011). 6/7/12 @11



3D Dirac semimetals

* There are proposals for a TI/ NI
multilayer heterostructure which
realizes a phase transition between a
normal and a topological insulator

* With either inversion or time reversal
symmetry breaking, a range of
parameters realizes Weyl points'?

* In general, topological phase
transitions are hard to engineer

With Inversion  Without Inversion

Bandgap

Dirac
point

Parameter ()
Topological to Normal Insulator transition

Main point of talk: Is it possible to prevent two Weyl points
of opposite Chern number from annihilating due to the
presence of (another) crystallographic symmetry? Yes!

1. Burkov, A.A. and Balents, L. Phys. Rev. Lett. 107(12), 127205 (2011).
2 2. Haldsz, G.B. and Balents, L. arXiv:1109.6137[cond-mat.mes-hall] (2011). ¢///12¢12



s-states on a diamond
lattice
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Tight-binding model of s-states on the diamond lattice (Fu, Kane, and Mele)!
The point X in the Brillouin zone, realizes a symmetry-protected Dirac point
Why space group 2277

Why the X point?

Is there a realistic material that can have a Dirac point at the Fermi level?

° 1. Fu, L., Kane, C.L. and Mele, E.J. Phys. Rev. Lett. 98, 106803-1-4 (2007). 6/7/12 @13



Finding 3D Dirac points

Which space groups: crystallographic symmetry

Which k-points: projective representations of little
groups

Presence at Fermi level: chemical and electronic
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Dirac point: search criteria

A Dirac point has four degenerate
eigenstates: must find double space groups
with four-dimensional irreducible
representations: 4DIR

Each band disperses linearly in k around
the Dirac point: must ensure nonzero linear
coeffs

Want Dirac point(s) as only Fermi surface:
the total Chern number of the two occupied
states must be zero

Dirac points can also exist accidentally as B
in the TI/NI transition; our methods cannot
identity accidentally occurring Dirac points

® 6/7/12 @15



First test: Chern
number=0

The Chern number can be determined up to an
integer when a rotation symmetry is present

If a Dirac point is protected by 3-fold rotation
symmetry, its Chern number cannot be made to
vanish

For 2-fold and 4-fold rotation symmetry, the Chern
number can be made to vanish

This rules out all 4DIRs that arise in groups
containing 3-fold rotation symmetry

6/7/12 @16



Calculating Chern number

In the presence of an n-fold rotation , ,
2m/n rotation axis
symmetry, the Chern number mod 7 at a

point k can be determined using rotation g2’
eigenvalues of filled states at the fixed |
points S

The difference of eigenvalues from one Rotation fixed
pole to the other signals the presence of a points
singularity inside 05

A point-like crossing of bands is exactly \/

that singularity! ei2na/n

This singularity is quantified by the
Chern number which gives the winding
around 0S of the gauge transformation
required to match states at the two poles

Chern no. = (p-q) mod n
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Chern number
under 3-fold rotations

q= 3/2 oi2n3/6 g2 p =-3/2 p-q = 3=

q= 1/2 ei2n/ ori2n/6 p =_1/2 p-q = -1
q - _1/2 e-i2n/6 @i2n/6 p — 1/2 p_q — 1

q=-3/2 p=23/2 p-g=3= 0

el21't3/ 6

(4= 1)mod 3

A 4DIR is spanned by p*? states, also denoted %P5,
Along a 3-fold rotation axis, such a 4DIR has 4 eigenvalues shown above
The Chern numbers of the 2 filled bands do not sum to zero!

For symmorphic space groups: even if they have a
4DIR at a k-point, if there is a 3-fold axis in the little
group at that point, there cannot be a symmetry-

protected Dirac point there!
° 6/7/12 @18



Why focus on 3-fold
rotations?

In all the symmorphic space groups (73 out of 230),
4DIRs occur at points k which have cubic symmetry

All cubic point groups (5 of 32 total) have three-fold
rotations!

The rest of the 27 point groups do not carry four
dimensional representations

Linearly dispersing bands along axes of n-fold rotations
for n =2, 4 can adjust so that the Chern number vanishes

Is it possible to find 4DIRs for groups
without three-fold symmetry?
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Second test: 4 dimensional
representations

* Non-symmorphic (double) space groups (157 out of 230)
can carry 4DIRs even though most of them lack three-fold
symmetry

* What are non-symmorphic space-groups? Those that have
screw axis or glide plane—operations that combine a point
group operation with a non-primitive lattice translation

* Examples
a) DNA
b) Diamond lattice (2 interpenetrating FCC lattices)

® 6/7/12 @20



Non-symmorphic
symmetry operations

Rotation of the helix is not a N1 —
symmetry i e
To return the helix to its original .
configuration, we need to -
translate the lattice by a small ~
vector t which is not a multiple ,\ —
of any of the lattice vectors ) 4
Therefore the symmetry T
operator is {R|t}: rotation p 4
followed by translation t...a ? ?
“screw axis” . 01 2 . 3
(a) *3 ®
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What happens in the
Brillouin zone?

* A non-symmorphic symmetry operation carries
translation in real space. In reciprocal space, the point
group operation carries a phase factor, not translation.

o 6/7/12 @22



Representations of non-
symmorphic operations I

* Even though a non-symmorphic operation like {m |t} in
graphene acts like a point group operation in the
Brillouin zone, its representation for a non-symmorphic
lattice is different from a symmorphic lattice

* Recall that any translation {E |t} of the crystal implements
a phase ¢t on bloch states W,

* Therefore non-symmorphic operations like {m |t} act as
ekt (m), where U, (m) is a unitary operator that
implements the mirror operation

® 6/7/12 @23



Representations of non-
symmorphic operations II

* Recall how space-group operations multiply:
Ry 14 HR, 1t} = {R{R, | t;+ R;t,}
* The representatives follow as,

e—z’k.tl Uk(Rl)e—ik.tz Uk(RZ)e—z’k-(tl +R1t2) Uk(Rl Rz)
U (R Ui (Ry) = e By k=K t27 (R Ry

« If k is an internal point of the Brillouin zone, R,k = k since
all the {R |t} under consideration belong to the little space
group at k

e If k is on the surface of the Brillouin zone, R;’k=k + g,
where g.is a reciprocal lattice vector:

Uk(Rl)Uk(RQ) — e '8i't2 Uk(RlRQ)
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Representations of non-

symmorphic operations III

The matrices U, form a regresentation of the point group
consisting of all rotations R; with the following multiplication
rule:

Uw(R1)Ux(R2) = e ® 2 (R R>)

The phase exp(-ig;.t,) =1 if and only if either g;=0, or t,isa
real-space lattice vector

For non—symmor]ahic operations, t,is non-primitive, so the
unitary matrices U, form a projective representation with
some lattice-specific factor system

Projective representations of point groups without 3-fold
rotation symmetry can be 4DIRs

In 3D crystals, all candidate Dirac points belong to a
projective representation of one of the 32 crystal point groups

Ref: Bradley, C.J. and Cracknell, A.P. The Mathematical Theory of Symmetry in Solids (Oxford, 1972).

6/7/12 @25



Third test: Splitting of the
representation

* We can use k'p perturbation theory to determine
whether the effective Hamiltonian at a 4DIR has linear
dispersion in all directions

* For a general spin-orbit coupled system, the Schrodinger
equation reads,

[ 2

= — k.
om +V A o5 (VV X P)-ff] e = Ext¥x where ¥k(r) = uk(r)e™”
p° 21.2
k). — | B —
o -I—V—|—4m2C2VV><(p+h )J]uk ( — Ui
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k.p perturbation theory I

e Suppose there is a four dimensional representation at X

e At X+k the Schrodinger equation for uy,, gets modified
accordingly

e Ey.. can be written as

k - X+k Exix=FEx+ (¢X|I:I/|¢X> + ...

where H' = hk - <p -+

m  4m?c?

UXVV) =k-R

. Ifall (V% IR[¢)are identically zero, none of the bands
degenerate at X can disperse linearly in k in its vicinity

o Ref: Dresselhaus, G. Phys. Rev. 100, 580-586 (1955). 6/7/12 ®27



K.p perturbation theory II

W, lspan the four dimensional representation I' at X

R is a vector, so it belongs to the vector
representation I'V of the little space-group at X

If ' x TV x I" contains the identity representatlon of
the group, some of the matrix elements (¥ [R|v%)
are guaranteed to be non-vanishing

Alternatively, we can check if the symmetric
kronecker product [I" x I'] contains the vector
representation I'V

6/7/12 @28



Splitting of the

representation

* What are the possible ways in which a four dimensional
can split up to linear order in k

X

K

X

A

(a)

Symmetry determines how the 4-fold degeneracy splits:

(b)

(c)

2+2 dimensional representations

1+1+1+1 dimensional representations

1+2+1 dimensional representations

1+2+1 dimensional representations with identical energy
spectra on both sides

(d)
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Summary of the criteria

Is there a point k in the Brillouin zone such that its little
space group carries a four dimensional irreducible
representation (4DIR) I'?

Does I carry a Chern number of zero?

Does the symmetric kronecker product [I' x I'] contain
the vector representation of the little space group at k?

How does I split along high-symmetry lines away from
k? In a way that avoids zero slope?

If the answer to all of these questions is yes, then k is a
candidate for hosting a Dirac point

This leaves about two dozen “good”
candidate space groups

6/7/12 @30



Beyond Symmetry

* Symmetry guarantees:
oFour-fold degeneracy
oLinear dispersion in neighborhood of high symmetry
point
* Does not answer:
ols the degeneracy at the Fermi level?
ols it the only Fermi surface?

oDoes the linearity persist over a useful energy range?

These are questions that chemistry must answer!

® 6/7/12 @3]



Design Strategy
< Different space group?

Generate possible lattice configurations

Different lattice?

Identify orbitals on lattice that belong to correct rep

Different species?

Choose species with these orbitals are at fermi level

Good candidate?

Assess makeability

® 6/7/12 @32



Example: Space Group 227

* We already know that a diamond lattice of s-orbitals will
give us a Dirac point at X

4.0
3.0
S 20
10
S
&0 0.0
(D]
S -1.0 /
3.0 /
4.0
T X W

® 6/7/12 @33



Example: Space Group

227

 Put s, species on diamond lattice
* Results:

o Too much Fermi surface

o Dirac point is overwhelmed

o Almost certainly un-makeable

K

VARSNVAN.
ARy /.
NN

eV

eV

W
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B-Cristobalite

* High temperature form of SiO,
* Si on a diamond lattice with O bridging the bonds

* p-orbitals of O belong to correct rep!
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B-Cristobalite
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p-Cristobalite

* Degeneracy not at Fermi energy
* Along the X-W line, bands nearly degenerate

oSingle group representation is doubly degenerate along
X-W

Substitutions for Si:
 Can we split the bands better?

oHeavier atoms for more spin orbit coupling
* Can we move the Fermi level?

oAtoms with different numbers of valence electrons and
different energy ordering
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* Fermi surface at Dirac point
* Wide energy range where linear
* Meta-stable!

o 6/7/12 @ 4]



BiO,
* The 4DIR at X is the only allowed double-valued
representation at X

* Why aren’t there more Dirac-like crossings in the band
structure

* There actually are, but they are of low quality

Why is the one at the Fermi energy so good?

° 6/7/12 ®42



* The bands of the Dirac point are composed of Bi s and O p states,
with splitting into bonding- and antibonding-like states.

“anti-bonding” — 4DIR

“bonding”

6/7/12 ® 43
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Dirac point involves states
with strong bonding interactions
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Counter Example:
Laves Structure

* Belongs to 227, but structure is more closely packed
* No distinct bonding states arise
 Structure is metallic; band structure is messy
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Conclusions

* Identified symmetry criteria to look for
candidate space-groups that will allow 3D Dirac
points

* Identified chemical and physical criteria

required to elevate said Dirac points to the Fermi
level

* Proposed a realistic metastable material that
realizes three symmetry protected Dirac points

at the BZ
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